Skip to main content

Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN)

  • Chapter
  • First Online:
Book cover Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Part of the book series: NanoScience and Technology ((NANO))

  • 2379 Accesses

Abstract

Nanoscale science and technology demands novel approaches and new knowledge for further development. Nanofabrication has been widely employed in modern science and engineering. Probe-based nanolithography is a common technique to manufacture nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. A delicate hardware system was designed and constructed to realize the nanometer-scale direct writing. A simple and unique process, namely, laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures has been developed. The LASPAN system, process, and the application in gold-silicon (Au-Si) binary system have been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     ∗ Currently at Applied Optoelectronics, Inc.

  2. 2.

     † Currently at Harvard University

References

  1. R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. Modular Series on Solid State Devices (Prentice Hall, Upper Saddle River, 2002)

    Google Scholar 

  2. M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, 2002)

    Google Scholar 

  3. N.M. Miskovsky, T.T. Tsong, Field evaporation of gold in single- and double-electrode systems. Phys. Rev. B 46(4), 2640 (1992)

    Google Scholar 

  4. J.I. Pascual, et al., Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71(12), 1852 (1993)

    Google Scholar 

  5. G.S. Hsiao, R.M. Penner, J. Kingsley, Deposition of metal nanostructures onto Si(111) surfaces by field evaporation in the scanning tunneling microscope. Appl. Phys. Lett. 64(11), 1350–1352 (1994)

    Google Scholar 

  6. D.H. Huang, T. Nakayama, M. Aono, Platinum nanodot formation by atomic point contact with a scanning tunneling microscope platinum tip. Appl. Phys. Lett. 73(23), 3360–3362 (1998)

    Google Scholar 

  7. D. Sundrani, S.B. Darling, S.J. Sibener, Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20(12), 5091–5099 (2004)

    Google Scholar 

  8. A. Laracuente, M.J. Bronikowski, A. Gallagher, Chemical vapor deposition of nanometer-size aluminum features on silicon surfaces using an STM tip. Appl. Surf. Sci. 107, 11–17 (1996)

    Google Scholar 

  9. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986)

    Google Scholar 

  10. G. Binnig, H. Rohrer, Scanning tunneling microscopy. IBM J. Res. Dev. 44(1–2), 279–293 (2000)

    Google Scholar 

  11. G. Binnig, et al., Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982)

    Google Scholar 

  12. R.D. Piner, et al., “Dip-Pen” nanolithography. Science 283(5402), 661–663 (1999)

    Google Scholar 

  13. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258): 85–87 (1996)

    Google Scholar 

  14. J.A. Dagata, et al., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56(20), 2001–2003 (1990)

    Google Scholar 

  15. H.C. Day, D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 62(21), 2691–2693 (1993)

    Google Scholar 

  16. K. Salaita, et al., Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1(10), 940–945 (2005)

    Google Scholar 

  17. D. Bullen, et al., Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84(5), 789–791 (2004)

    Google Scholar 

  18. J. Haaheim, et al., Dip pen nanolithography (DPN): process and instrument performance with NanoInk’s Nscriptor system. Ultramicroscopy 103(2), 117–132 (2005)

    Google Scholar 

  19. Hong, S., J. Zhu, C.A. Mirkin, Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286(5439), 523–525 (1999)

    Google Scholar 

  20. S. Hong, C.A. Mirkin, A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808–1811 (2000)

    Google Scholar 

  21. S.W. Lee, et al., Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater. 17(22),2749–2753 (2005)

    Google Scholar 

  22. L. Fu, et al., Nanopatterning of “Hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757–760 (2003)

    Google Scholar 

  23. J.-M. Nam, et al., Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 43(10), 1246–1249 (2004)

    Google Scholar 

  24. J. Jang, G.C. Schatz, M.A. Ratner, Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 90(15), 156104 (2003)

    Google Scholar 

  25. P.E. Sheehan, L.J. Whitman, Thiol diffusion and the role of humidity in “Dip Pen Nanolithography”. Phys. Rev. Lett. 88(15), 156104 (2002)

    Google Scholar 

  26. C.R. Lowe, Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr. Opin. Struct. Biol. 10(4), 428–434 (2000)

    Google Scholar 

  27. M.H. Hong, et al., Laser assisted surface nanopatterning. Sensors Actuators A: Phys. 108(1–3), 69–74 (2003)

    Google Scholar 

  28. V. Grigalinas, et al., Laser pulse assisted nanoimprint lithography. Thin Solid Films 453–454, 13–15 (2004)

    Google Scholar 

  29. A.A. Gorbunov, W. Pompe, Thin film nanoprocessing by laser/STM combination. Physica Status Solidi (a) 145(2), 333–338 (1994)

    Google Scholar 

  30. S.M. Huang, et al., Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 92(5), 2495–2500 (2002)

    Google Scholar 

  31. M. Tortonese, Cantilevers and tips for atomic force microscopy. Eng. Med. Biol. Mag., IEEE 16(2), 28–33 (1997)

    Google Scholar 

  32. B. Bhushan, Scanning probe Microscopy in Nanoscience and Nanotechnology, vol 14. Nanoscience and Technology (Springer, Berlin, 2010)

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Science Foundation (grant number 0506082).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peng, L., Zhang, H., Hemmer, P., Liang, H. (2012). Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN). In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_1

Download citation

Publish with us

Policies and ethics