Skip to main content

Gecko Adhesion

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2138 Accesses

Abstract

The leg attachment pads of several animals including many insects, spiders, and lizards are capable of attaching to and detaching from a variety of surfaces and are used for locomotion, even on vertical walls or across the ceiling (Gorb, 2001; Bhushan, 2007). Biological evolution over a long period of time has led to the optimization of their leg attachment systems. This dynamic attachment ability is referred to as reversible adhesion or smart adhesion (Bhushan et al., 2006). Many insects (e.g., beetles and flies) and spiders have been the subject of investigation. However, the attachment pads of geckos have been the most widely studied due to the fact that they have the highest body mass and exhibit the most versatile and effective adhesive known in nature. As a result, most of this chapter will be concerned with gecko adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aksak B, Murphy MP, Sitti M (2007) Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 23:3322–3332

    Google Scholar 

  2. Aksak B, Murphy MP, Sitti M (2008) Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces. In: Proceedings of 2008 IEEE conference on robotics and automation, Pasadena, CA, pp 3058–3063

    Google Scholar 

  3. Aristotle (1918) Historia Animalium, transl. Thompson DAW, < http://classics.mit.edu/Aristotle/history_anim.html > 

  4. Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA 100:10603–10606

    Google Scholar 

  5. Autumn K (2006) How gecko toes stick. Am Sci 94:124–132

    Google Scholar 

  6. Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090

    Google Scholar 

  7. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Google Scholar 

  8. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der waals adhesion in gecko setae. Proc Natl Acad Sci USA 99:12252–12256

    Google Scholar 

  9. Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R (2006a) Effective elastic modulus of isolated gecko setal arrays. J Exp Biol 209:3558–3568

    Google Scholar 

  10. Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006b) Frictional adhesion, a new angle on gecko attachment. J Exp Biol 209:3569–3579

    Google Scholar 

  11. Barnes WJP, Smith J, Oines C, Mundl R (2002) Bionics and wet grip. Tire Technol Int 2002:56–60

    Google Scholar 

  12. Bergmann PJ, Irschick DJ (2005) Effects of temperature on maximum clinging ability in a diurnal gecko: evidence for a passive clinging mechanism? J Exp Zool 303A:785–791

    Google Scholar 

  13. Bertram JEA, Gosline JM (1987) Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects. J Exp Biol 130:121–136

    Google Scholar 

  14. Bhushan B (1996) Tribology and mechanics of magnetic storage devices, 2nd edn. Springer, New York

    Google Scholar 

  15. Bhushan B (1999) Principles and applications of tribology. Wiley, New York

    Google Scholar 

  16. Bhushan B (2002) Introduction to tribology. Wiley, New York

    Google Scholar 

  17. Bhushan B (2007) Adhesion of multi-level hierarchical attachment systems in gecko feet. J Adhes Sci Technol 21:1213–1258

    Google Scholar 

  18. Bhushan B (2010) Springer handbook of nanotechnology, 3rd edn. Springer, Heidelberg

    Google Scholar 

  19. Bhushan B (2011) Nanotribology and nanomechanics I – Measurement techniques, II – Nanotribology, biomimetics, and industrial applications, 3rd edn Springer, Heidelberg

    Google Scholar 

  20. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108

    Google Scholar 

  21. Bhushan B, Sayer RA (2007) Surface characterization and friction of a bio-inspired reversible adhesive tape. Microsyst Technol 13:71–78

    Google Scholar 

  22. Bhushan B, Peressadko AG, Kim TW (2006) Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ‘smart adhesion’. J Adhes Sci Technol 20:1475–1491

    Google Scholar 

  23. Bikerman JJ (1961) The science of adhesive joints. Academic, New York

    Google Scholar 

  24. Burton Z, Bhushan B (2005) Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett 5:1607–1613

    Google Scholar 

  25. Cai S, Bhushan B (2007) Effects of symmetric and asymmetric contact angles and division of menisci on meniscus and viscous forces during separation. Philos Mag 87:5505–5522

    Google Scholar 

  26. Cai S, Bhushan B (2008) Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid mediated contacts, (invited). Mater Sci Eng R 61:78–106

    Google Scholar 

  27. Cho WK, Choi IS (2007) Fabrication of hairy polymeric films inspired by geckos: wetting and high adhesion properties. Adv Funct Mater 18:1089–1096

    Google Scholar 

  28. Chui BW, Kenny TW, Mamin HJ, Terris BD, Rugar D (1998) Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever. Appl Phys Lett 72:1388–1390

    Google Scholar 

  29. Cutkosky MR, Kim S (2009) Design and fabrication of multi-materials structures for bio-inspired robots. Philos Trans R Soc A 367:1799–1813

    Google Scholar 

  30. Daltorio KA, Gorb S, Peressadko A, Horchler AD, Ritzmann RE, Quinn RD (2007) A robot that climbs walls using micro-structured polymer adhesive. In: Proceedings of 30th annual meeting of the adhesion society, pp 329–331

    Google Scholar 

  31. Davies J, Haq S, Hawke T, Sargent JP (2008) A practical approach to the development of a synthetic gecko tape. Int J Adhesion Adhesives 29:380–390

    Google Scholar 

  32. del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17:R81–R95

    Google Scholar 

  33. del Campo A, Greiner, C, Alvares I, Arzt E (2007a) Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv Mater 19:1973–1977

    Google Scholar 

  34. del Campo A, Greiner C, Arzt E (2007b) Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23:10235–10243

    Google Scholar 

  35. Dellit WD (1934) Zur Anatomie und Physiologie der Geckozehe. Jena Z Naturwissen 68:613–658

    Google Scholar 

  36. Derjaguin BV, Muller VM, Toporov YuP (1975) Effect of contact deformation on the adhesion of particles. J Colloid Interface Sci 53:314–326

    Google Scholar 

  37. Dieter GE (1988) Mechanical metallurgy. McGraw Hill, London

    Google Scholar 

  38. Fan PL, O’Brien MJ (1975) Adhesion in deformable isolated capillaries. In: Lee LH (ed) Adhesion science and technology, vol 9A. Plenum, New York, p 635

    Google Scholar 

  39. Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611–2621

    Google Scholar 

  40. Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics of wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    Google Scholar 

  41. Federle W, Barnes WJP, Baumgartner W, Drechsler P, Smith JM (2006) Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface 3:689–697

    Google Scholar 

  42. Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285

    Google Scholar 

  43. Ge L, Sethi S, Ci L, Ajayan M, Dhinojwale A (2007) Carbon nanotube-based synthetic gecko tape. PNAS 104:10792–10795

    Google Scholar 

  44. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463

    Google Scholar 

  45. Gennaro JGJ (1969) The gecko grip. Nat Hist 78:36–43

    Google Scholar 

  46. Glassmaker NJ, Jagota A, Hui CY, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. Making contact. J R Soc Interface 1:23–33

    Google Scholar 

  47. Glassmaker NJ, Jagota A, Hui CY (2005) Adhesion enhancement in a biomimetic fibrillar interface. Acta Biomater 1:367–375

    Google Scholar 

  48. Gorb S (2001) Attachment devices of insect cuticles. Kluwer, Dordrecht

    Google Scholar 

  49. Gorb S, Varenberg M, Peressadko A, Tuma J (2007) Biomimetic mushroom-shaped fibrillar adhesive microstructures. J R Soc Interface 4:271–275

    Google Scholar 

  50. Hamaker HC (1937) London van der Waals attraction between spherical bodies. Physica 4:1058

    Google Scholar 

  51. Han D, Zhou K, Bauer AM (2004) Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the gekkota. Biol J Linn Soc 83:353–368

    Google Scholar 

  52. Hanna G, Barnes WJP (1991) Adhesion and detachment of the toe pads of tree frogs. J Exp Biol 155:103–125

    Google Scholar 

  53. Hansen WR, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci USA 102:385–389

    Google Scholar 

  54. Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere 62:307–362

    Google Scholar 

  55. Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York

    Google Scholar 

  56. Hora SL (1923) The adhesive apparatus on the toes of certain geckos and tree frogs. J Asiat Soc Beng 9:137–145

    Google Scholar 

  57. Houwink R, Salomon G (1967) Effect of contamination on the adhesion of metallic couples in ultra high vacuum. J Appl Phys 38:1896–1904

    Google Scholar 

  58. Huber G, Gorb SN, Spolenak R, Arzt E (2005a) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4

    Google Scholar 

  59. Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005b) Evidence for capillarity contributions to gecko adhesion from single spatula and nanomechanical measurements. Proc Natl Acad Sci USA 102:16293–16296

    Google Scholar 

  60. Irschick DJ, Austin CC, Petren K, Fisher RN, Losos JB, Ellers O (1996) A comparative analysis of clinging ability among pad-bearing lizards. Biol J Linn Soc 59:21–35

    Google Scholar 

  61. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic, San Diego

    Google Scholar 

  62. Israelachvili JN, Tabor D (1972) The measurement of van der Waals dispersion forces in the range of 1.5 to 130 nm. Proc R Soc Lond A 331:19–38

    Google Scholar 

  63. Jaenicke R (1998), Atmospheric aerosol size distribution. In: Harrison RM, van Grieken R (eds) Atmospheric particles. Wiley, New York, pp. 1–29

    Google Scholar 

  64. Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145

    Google Scholar 

  65. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301–313

    Google Scholar 

  66. Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733–2738

    Google Scholar 

  67. Kim TW, Bhushan B (2007a) The adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol 21:1–20

    Google Scholar 

  68. Kim TW, Bhushan B (2007b) Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. Ultramicroscopy 107:902–912

    Google Scholar 

  69. Kim TW, Bhushan B (2007c) Optimization of biomimetic attachment system contacting with a rough surface. J Vac Sci Technol A 25:1003–1012

    Google Scholar 

  70. Kim TW, Bhushan B (2008) The adhesion model considering capillarity for gecko attachment system. J R Soc Interface 5:319–327

    Google Scholar 

  71. Kluge AG (2001) Gekkotan lizard taxonomy. Hamadryad 26:1–209

    Google Scholar 

  72. Lee H, Bhushan B (2012) Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. (unpublished)

    Google Scholar 

  73. Losos JB (1990) Thermal sensitivity of sprinting and clinging performance in the tokay gecko (Gekko gecko). Asiat Herp Res 3:54–59

    Google Scholar 

  74. Maderson PFA (1964) Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 2003:780–781

    Google Scholar 

  75. Murphy MP, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancement of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Technol 21:1281–1296

    Google Scholar 

  76. Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16:1159–1166

    Google Scholar 

  77. Nosonovsky M, Bhushan B (2008) Multiscale dissipative mechanisms and hierarchical surfaces: friction, superhydrophobicity, and biomimetics. Springer, Heidelberg

    Google Scholar 

  78. Ohler A (1995) Digital pad morphology in torrent-living ranid frogs. Asiat Herpetol Res 6:85–96

    Google Scholar 

  79. Orr FM, Scriven LE, Rivas AP (1975) Pendular rings between solids: meniscus properties and capillary forces. J Fluid Mech 67:723–742

    Google Scholar 

  80. Peattie AM, Full RJ (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci USA 104:18595–18600

    Google Scholar 

  81. Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118:7614–7621

    Google Scholar 

  82. Persson BNJ, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437–11444

    Google Scholar 

  83. Pesika NS, Tian Y, Zhao B, Rosenberg K, Zeng H, McGuiggen P, Autumn K, Israelachvili JN (2007) Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes 83: 383–401

    Google Scholar 

  84. Phipps PBP, Rice DW (1979) Role of water in atmospheric corrosion. In: Brubaker GR, Phipps PBP (eds) Corrosion chemistry, ACS symposium series, vol 89. American Chemical Society, Washington, D.C, pp. 235–261

    Google Scholar 

  85. Qu L, Dai L, Stone M, Xia Z, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238–242

    Google Scholar 

  86. Rizzo N, Gardner K, Walls D, Keiper-Hrynko N, Hallahan D (2006) Characterization of the structure and composition of gecko adhesive setae. J R Soc Interface 3:441–451

    Google Scholar 

  87. Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117:271–294

    Google Scholar 

  88. Russell AP (1975) A contribution to the functional morphology of the foot of the tokay, Gekko gecko. J Zool Lond 176:437–476

    Google Scholar 

  89. Russell AP (1986) The morphological basis of weight-bearing in the scansors of the tokay gecko. Can J Zool 64:948–955

    Google Scholar 

  90. Schäffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Electrically induced structure formation and pattern transfer. Nature 403:874–877

    Google Scholar 

  91. Schleich HH, Kästle W (1986) Ultrastrukturen an Gecko-Zehen. Amphibia Reptilia 7:141–166

    Google Scholar 

  92. Schmidt HR (1904) Zur Anatomie und Physiologie der Geckopfote. Jena Z Naturwissen 39:551

    Google Scholar 

  93. Shah GJ, Sitti M (2004) Modeling and design of biomimetic adhesives inspired by gecko foot-hairs. In: IEEE international conference on robotics and biomimetics, pp 873–878

    Google Scholar 

  94. Simmermacher G (1884) Untersuchungen uber Haftapparate an Tarsalgliedern von Insekten. Zeitschr Wissen Zool 40:481–556

    Google Scholar 

  95. Sitti M (2003) High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly. Proc IEEE/ASME Adv Mechatronics Conf 2:886–890

    Google Scholar 

  96. Sitti M, Fearing RS (2003) Synthetic gecko foot-hair for micro/nano structures as dry adhesives. J Adhes Sci Technol 17:1055–1073

    Google Scholar 

  97. Spolenak R, Gorb S, Arzt E (2005) Adhesion design maps for bio-inspired attachment systems. Acta Biomater 1:5–13

    Google Scholar 

  98. Stork NE (1980) Experimental analysis of adhesion of Chrysolina politaon a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  99. Stork NE (1983) A comparison of the adhesive setae on the feet of lizards and arthropods. J Nat Hist 17:829–835

    Google Scholar 

  100. Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment and detachment. Proc Nat Acad Sci USA 103:19320–19325

    Google Scholar 

  101. Tinkle DW (1992) Gecko. In: Cummings M (ed) Encyclopedia Americana, vol 12. Grolier, London, p 359

    Google Scholar 

  102. Van der Kloot WG (1992) Molting. In: Cummings M (ed) Encyclopedia Americana, vol 19. Grolier, London, pp 336–337

    Google Scholar 

  103. Wagler J (1830) Naturliches System der Amphibien. J. G. Cotta’schen Buchhandlung, Munich

    Google Scholar 

  104. Wan KT, Smith DT, Lawn BR (1992) Fracture and contact adhesion energies of mica-mica, silica-silica, and mica-silica interfaces in dry and moist atmospheres. J Am Ceram Soc 75:667–676

    Google Scholar 

  105. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Google Scholar 

  106. Williams EE, Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:1509–1511

    Google Scholar 

  107. Yao H, Gao H (2006) Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J Mech Phys Solids 54:1120–1146

    Google Scholar 

  108. Young WC, Budynas R (2001) Roark’s formulas for stress and strain, 7th edn. McGraw Hill, New York

    Google Scholar 

  109. Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun 3799–3801

    Google Scholar 

  110. Zimon AD (1969) Adhesion of dust and powder, transl by M. Corn. Plenum, New York

    Google Scholar 

  111. Zisman WA (1963) Influence of constitution on adhesion. Ind Eng Chem 55(10):18–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2012). Gecko Adhesion. In: Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25408-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25408-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25407-9

  • Online ISBN: 978-3-642-25408-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics