Skip to main content

Introduction

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2037 Accesses

Abstract

Biomimetics means mimicking biology or nature. Biomimetics allows biologically inspired design, adaptation, or derivation from nature. The word biomimetics was coined by polymath Otto Schmitt in 1957, who, in his doctoral research, developed a physical device that mimicked the electrical action of a nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) (2008) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Alexander RM, Diskin A (2004) Human bones: a scientific and pictorial investigation. Pi Press, New York

    Google Scholar 

  • Anonymous (2007) Biomimetics: strategies for product design inspired by nature. Department of Trade and Industry, London

    Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Google Scholar 

  • Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:R15–R28

    Google Scholar 

  • Bar-Cohen Y (2011) Biomimetics: nature-based innovation. CRC, Boca Raton, FL

    Google Scholar 

  • Barth FG, Humphrey JAC, Secomb TW (2003) Sensors and sensing in biology and engineering. Springer, New York

    Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Google Scholar 

  • Bechert DW, Bruse M, Hage W, Van Der Hoeven JGT, Hoppe G (1997) Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech 338:59–87

    Google Scholar 

  • Bechert DW, Bruse M, Hage W (2000) Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28:403–412

    Google Scholar 

  • Bhushan B (2007) Adhesion of multi-level hierarchical attachment systems in gecko feet. J Adhes Sci Technol 21:1213–1258

    Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature—an overview. Philos Trans R Soc A 367:1445–1486

    Google Scholar 

  • Bhushan B (2010) Springer handbook of nanotechnology, 3rd edn. Springer, Heidelberg

    Google Scholar 

  • Bhushan B (2011) Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein J Nanotechnol 2:66–84

    Google Scholar 

  • Bhushan B, Jung YC (2006) Micro and nanoscale characterization of hydrophobic and hydrophilic leaf surface. Nanotechnology 17:2758–2772

    Google Scholar 

  • Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108

    Google Scholar 

  • Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A 367:1631–1672

    Google Scholar 

  • Bixler GD, Bhushan B (2012) Biofouling: lessons from nature. Philos Trans R Soc A 370:2381–2417

    Google Scholar 

  • Burton Z, Bhushan B (2006) Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy 106:709–719

    Google Scholar 

  • Carman ML, Estes TG, Feinburg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB (2006) Engineered antifouling microtopographies—correlating wettability with cell attachment. Biofouling 22:11–21

    Google Scholar 

  • Cutkosky MR, Kim S (2009) Design and fabrication of multi-materials structures for bio-inspired robots. Philos Trans R Soc A 367:1799–1813

    Google Scholar 

  • Dean B, Bhushan B (2010) Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans R Soc A 368:4775–4806; 368:5737

    Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334

    Google Scholar 

  • Gao XF, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432:36

    Google Scholar 

  • Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285

    Google Scholar 

  • Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22:339–360

    Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Kluwer Academic, Dordrecht

    Google Scholar 

  • Gordon JE (1976) The new science of strong materials, or why you don’t fall through the floor, 2nd edn. Pelican–Penguin, London

    Google Scholar 

  • Grunwald I, Rischka K, Kast SM, Scheibel T, Bargel H (2009) Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineering proteins. Philos Trans R Soc A 367:1727–1726

    Google Scholar 

  • Jakab PL (1990) Vision of a flying machine. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Google Scholar 

  • Jones CJ, Aizawa S (1991) The bacterial flagellum and flagellar motor: structure, assembly, and functions. Adv Microb Physiol 32:109–172

    Google Scholar 

  • Jung YC, Bhushan B (2010) Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J Phys Condens Matter 22:035104

    Google Scholar 

  • Kesel A, Liedert R (2007) Learning from nature: non-toxic biofouling control by shark skin effect. Comp Biochem Physiol A 146:S130

    Google Scholar 

  • Koch K, Bhushan B, Barthlott W (2008) Diversity of structure, morphology, and wetting of plant surfaces (invited). Soft Matter 4:1943–1963

    Google Scholar 

  • Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics (invited). Prog Mater Sci 54:137–178

    Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Mann S (2001) Biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206

    Google Scholar 

  • Mueller T (2008) Biomimetics design by natures. National Geographic April 2008, 68–90

    Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Google Scholar 

  • Nosonovsky M, Bhushan B (2009) Thermodynamics of surface degradation, self-organization, and self-healing for biomimetic surfaces. Philos Trans R Soc A 367:1607–1627

    Google Scholar 

  • Parker AR (2009) Natural photonics for industrial applications. Philos Trans R Soc A 367: 1759–1782

    Google Scholar 

  • Ralston E, Swain G (2009) Bioinspiration—the solution for biofouling control? Bioinsp Biomim 4:1–9

    Google Scholar 

  • Sarikaya M, Aksay IA (1995) Biomimetic design and processing of materials. American Institute of Physics, Woodbury

    Google Scholar 

  • Stegmaier T, Linke M, Planck H (2009) Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications. Philos Trans R Soc A 367:1749–1758

    Google Scholar 

  • Tamerler C, Sarikaya M (2009) Molecular biomimetics: nanotechnology and molecular medicine utilizing genetically engineered peptides. Philos Trans R Soc A 367:1705–1726

    Google Scholar 

  • Vincent JFV, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl AK (2006) Biomimetics: its practice and theory. J Roy Soc Interf 3:471–482

    Google Scholar 

  • Wagner P, Furstner R, Barthlott W, Neinhuis C (2003) Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J Exp Bot 54:1295–1303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2012). Introduction. In: Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25408-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25408-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25407-9

  • Online ISBN: 978-3-642-25408-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics