Skip to main content

Generating Anisotropic Seismic Models Based on Geomechanical Simulation

  • Chapter
  • First Online:
Microseismic Monitoring and Geomechanical Modelling of CO2 Storage in Subsurface Reservoirs

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Seismic waves provide a means of remotely sensing the subsurface over a range of length scales. Information from time-lapse (4-D) surveys and microseismic monitoring will compliment information from bore-hole logging, flow rate measurements and pressure tests that will allow us to locate zones of \(\hbox{CO}_{2}\) saturation, map out reservoir flow compartments and identify regions of high stress and fracturing. Commonly, it is assumed that observed time-lapse variations are simply a factor of varying fluid content.

It’s not rocket science, it’s rock science Julio Friedmann

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barruol G, Hoffmann R (1999) Upper mantle anisotropy beneath the Geoscope stations. J Geophys Res 104:10757–10774

    Article  Google Scholar 

  • Batzle ML, Simmon G, Siegfried RW (1980) Microcrack closure in rocks under stress:direct observation. J Geophys Res 85(B12):7072–7090

    Article  Google Scholar 

  • Blackman DK, Orcutt JA, Forsyth DW, Kendall J-M (1993) Seismic anisotropy in the mantle beneath an oceanic spreading center. Nature 366:675–677

    Article  Google Scholar 

  • Bolas HMN, Hermanrud C, Teige GMG (2005) Seal capacity estimation from subsurface pore pressures. Basin Res 17:583–599

    Article  Google Scholar 

  • Brown LT (2002) Integration of rock physics and reservoir simulation for the interpretation of time-lapse seismic data at Weyburn field, Saskatchewan, Master’s thesis. Colorado School of Mines, Golden Colorado

    Google Scholar 

  • De Gennaro S, Onaisi A, Grandi A, Ben-Brahim L, Neillo V (2008) 4D reservoir geomethanics:a case study from the HP/HT reservoirs of the Elgin and Franklin fields. First Break 26:53–59

    Google Scholar 

  • Furre AK, Andersen M, Moen AS, Tonnessen RK (2007) Sonic log derived pressure depletion predictions and application to time-lapse seismic interpretation. 69th EAGE Annual Meeting, Expanded Abstracts

    Google Scholar 

  • Grochau MH, Gurevich B (2008) Investigation of core data reliability to support time-lapse interpretation in Campos Basin Brazil. Geophysics 73(2):E59–E65

    Article  Google Scholar 

  • Gueguen Y, Schubnel A (2003) Elastic wave velocities and permeability of cracked rocks. Tectonophysics 370:163–176

    Article  Google Scholar 

  • Hall SA (2000) Rock fracture characterisation and seismic anisotropy:application to ocean bottom seismic data. PhD thesis, University of Leeds

    Google Scholar 

  • Hall SA, Kendall J-M, Maddock J, Fisher Q (2008) Crack density tensor inversion for analysis of changes in rock frame architecture. Geophys J Int 173:577–592

    Article  Google Scholar 

  • Han D-H (1986) Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments. PhD thesis, Stanford University

    Google Scholar 

  • Hatchell P, Bourne S (2005) Rocks under strain:strain-induced time-lapse time shifts are observed for depleting reservoirs. Leading Edge 24:1222–1225

    Article  Google Scholar 

  • He T (2006) P- and S-wave velocity measurement and pressure sensitivity analysis of AVA response. Master’s thesis, University of Alberta

    Google Scholar 

  • Hemsing DB (2007) Laboratory determination of seismic anisotropy in sedimentary rock from the Western Canadian Sedimentary Basin. Master’s thesis, University of Alberta

    Google Scholar 

  • Herwanger J (2007) Linking geomechanics and seismics:stress effects on time-lapse seismic data. EAGE Distinguished Lecturer Program, London

    Google Scholar 

  • Herwanger J, Horne S (2005) Predicting time-lapse stress effects in seismic data. Leading Edge 24:1234–1242

    Article  Google Scholar 

  • Holt RM, Brignoli M, Kenter CJ (2000) Core quality: quantification of coring-induced rock alteration. Int J Rock Mech Min Sci 37:889–907

    Article  Google Scholar 

  • Holt RM, Fjaer E, Nes OM, StenebrÃ¥ten JF (2008) Strain sensitivity of wave velocities in sediments and sedimentary rocks. 42nd US Rock Mechanics Symposium

    Google Scholar 

  • Hornby BE (1998) Experimental laboratory determination of the dynamic elastic prooperties of wet, drained shales. J Geophys Res 103(B12):29945–29964

    Article  Google Scholar 

  • Hudson JA (1981) Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J Royal Astron Soc 64:133–150

    Google Scholar 

  • Hudson JA (2000) The effect of fluid pressure on wave speeds in a cracked solid. Geophys J Int 143:302–310

    Article  Google Scholar 

  • Hudson JA, Liu E, Crampin S (1996) The mechanical properties of materials with interconnected cracks and pores. Geophys J Int 124:105–112

    Article  Google Scholar 

  • Jizba DL (1991) Mechanical and acoustical properties of sandstones and shales. PhD thesis, Stanford University

    Google Scholar 

  • Johnston JE, Christensen NI (1995) Seismic anisotropy of shales. J Geophys Res 100(B4):5991–6003

    Article  Google Scholar 

  • Kendall J-M, Fisher QJ, Covey Crump S, Maddock J, Carter A, Hall SA, Wookey J, Valcke S, Casey M, Lloyd G, Ben Ismail W (2007) Seismic anisotropy as an indicator of reservoir quality of siliclastic rocks. In: Jolley S, Barr D, Walsh J, Knipe R (eds) Structurally complex reservoirs, vol 292. Geological Society of London Special Publication, pp 123–136

    Google Scholar 

  • King MS (1966) Wave velocities in rocks as a functoin of changes in overburden pressure and pore fluid saturants. Geophysics 31:50–73

    Article  Google Scholar 

  • King MS (2002) Elastic wave propagation in and permeability for rocks with multiple parallel fractures. Int J Rock Mech Min Sci 39:1033–1043

    Article  Google Scholar 

  • Kuster GT, Toksoz MN (1974) Velocity and attenuation of seismic waves in two-phase media:Part I, Theoretical formulations. Geophysics 39(5):587–606

    Article  Google Scholar 

  • Lo T-W, Coyner KB, Toksoz MN (1986) Experimental determination of elastic anisctropy of Berea sandstone, Chicopee shale, and Chelmsford granite. Geophysics 51(1):164–171

    Article  Google Scholar 

  • MacBeth C (2004) A classification for the pressure-sensitivity properties of a sandstone rock frame. Geophysics 69(2):497–510

    Article  Google Scholar 

  • MacBeth C, Schuett H (2007) The stress dependent elastic properties of thermally induced microfractures in aeolian Rotliegend Sandstone. Geophys Prospect 55:323–332

    Article  Google Scholar 

  • Maddock J (2006) Missing title. PhD thesis, University of Leeds

    Google Scholar 

  • Makse HA, Gland N, Johnson DL, Schwartz LM (1999) Why effective medium theory fails in granular materials. Phys Rev Lett 83(24):5070–5073

    Article  Google Scholar 

  • Minkoff SE, Stone CM, Bryant S, Peszynska M (2004) Coupled geomechanics and flow simulation for time-lapse seismic modeling. Geophysics 61(1):200–211

    Article  Google Scholar 

  • van der Neut JR, Sen MK, Wapenaar K (2007) Monitoring effective stress changes in fault zones from time-lapse seismic reflection data - a model study. 69th EAGE Annual Meeting, Expanded Abstracts

    Google Scholar 

  • Nur AM, Simmons G (1969) The effect of saturation on velocity in low porosity rocks. Earth Planet Sci Lett 7:183–193

    Article  Google Scholar 

  • Pal-Bathija A, Batzle M (2007) An experimental study of the dilation factor in sandstones under anisotropic stress conditions. SEG Expanded Abstracts 26:1545–1549

    Article  Google Scholar 

  • Prioul R, Bakulin A, Bakulin V (2004) Non-linear rock physics model for estimation of 3D subsurface stress in anisotropic formations:theory and laboratory verification. Geophysics 69:415–425

    Article  Google Scholar 

  • Rojas MS (2005) Elastic rock properties of tight gas sandstones for reservoir characterization at Rulison Field, Colorado, Master’s thesis. Colorado School of Mines, Golden Colorado

    Google Scholar 

  • Rümpker G, Tommasi A, Kendall J-M (1999) Numerical simulations of depth-dependent anisotropy and frequency-dependent wave propagation effects. J Geophys Res 104:23141–23153

    Article  Google Scholar 

  • Sarout J, Molez L, Gueguen Y, Hoteit N (2007) Shale dynamic properties and anisotropy under triaxial loading:experimental and theoretical investigations. Phys Chem Earth 32:896–906

    Google Scholar 

  • Sayers CM (2002) Stress-dependent elastic anisotropy of sandstones. Geophys Prospect 50:85–95

    Article  Google Scholar 

  • Sayers CM, Kachanov M (1995) Microcrack induced elastic wave anisotropy of brittle rocks. J Geophys Res 100:4149–4156

    Article  Google Scholar 

  • Sayers CM, Schutjens PTM (2007) An introduction to reservoir geomechanics. Leading Edge 26:597–601

    Article  Google Scholar 

  • Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60(1):204–211

    Article  Google Scholar 

  • Scott TE, Abousleiman Y (2004) Acoustical imaging and mechanical properties of soft rock and marine sediments. Tech. Rep. 15302. Dept of Energy. http://www.osti.gov/energycitations/purl.cover.jsp?purl=/828441-uiLUfO/native/

  • Shapiro SA, Kaselow A (2005) Porosity and elastic anisotropy of rocks under tectonic stress and pore-pressure changes. Geophysics 70(5):N27–N38

    Article  Google Scholar 

  • Simmons G, Brace WF (1965) Comparison of static and dynamic measurements of compressibility of rocks. J Geophys Res 70(22):5649–5656

    Article  Google Scholar 

  • Staples R, Ita J, Burrell R, Nash R (2007) Monitoring pressure depletion and improving geomechanical models of the Shearwater field using 4D seismic. Leading Edge 26:636–642

    Article  Google Scholar 

  • Thomsen L (1995) Elastic anisotropy due to aligned cracks in porous rock. Geophys Prospect 43:805–829

    Article  Google Scholar 

  • Tod SR (2002) The effects of stress and fluid pressure on the anisotropy of interconnected cracks. Geophys J Int 149:149–156

    Article  Google Scholar 

  • Turley J, Sines G (1971) The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J Phys D:Appl Phys 4:264–271

    Article  Google Scholar 

  • Valcke SLA, Casey M, Lloyd GE, Kendall J-M, Fisher QJ (2006) Lattice preferred orientation and seismic anisotropy in sedimentary rocks. Geophys J Int 166:652–666

    Article  Google Scholar 

  • Verdon JP, Angus DA, Kendall J-M, Hall SA (2008) The effects of microstructure and nonlinear stress on anisotropic seismic velocities. Geophysics 73(4):D41–D51

    Article  Google Scholar 

  • Zatsepin S, Crampin S (1997) Modelling the compliance of crustal rock-I, response of shear-wave splitting to differential stress. Geophys J Int 129:477–494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Verdon .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag-Berlin Heidelberg

About this chapter

Cite this chapter

Verdon, J.P. (2012). Generating Anisotropic Seismic Models Based on Geomechanical Simulation. In: Microseismic Monitoring and Geomechanical Modelling of CO2 Storage in Subsurface Reservoirs. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25388-1_6

Download citation

Publish with us

Policies and ethics