Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1011 Accesses

Abstract

Seismic anisotropy refers to the situation where the velocity of a seismic wave is dependent on its direction of propagation and/or polarisation. Seismic anisotropy in sedimentary rocks can have many causes, which act at many length-scales. These mechanisms include mineral alignment (e.g., Valcke et al., 2006), alignment of grain-scale fabrics (e.g., Hall et al., 2008), which can be distorted by non-hydrostatic stresses (e.g., Zatsepin and Crampin, 1997; Verdon et al., 2008), larger scale sedimentary layering (e.g., Backus, 1962) and the presence of aligned fracture sets (e.g., Hudson, 1981). In hydrocarbon settings, the most common anisotropic mechanisms are horizontally aligned sedimentary layers, and horizontally aligned mineral and grain-scale fabrics. Such an anisotropic system will have a vertical axis of symmetry, and is referred to as Vertical Transverse Isotropy (VTI).

Images / split the truth / in fractions. Denise Levertov

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abt DL, Fischer KM (2008) Resolving three-dimensional anisotropic structure with shear wave splitting tomography. Geophys J Int 173(3):859–886

    Article  Google Scholar 

  • Al-Anboori ASS (2006) Anisotropy, focal mechanisms, and state of stress in an oilfiled: Passive seismic monitoring in Oman. Ph.D. thesis, University of Leeds

    Google Scholar 

  • Al-Harrasi O, Al-Anboori A, Wüstefeld A, Kendall J-M (2010). Seismic anisotropy in a hydrocarbon field estimated from microseismic data. Geophysical Prospecting (in press)

    Google Scholar 

  • Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 66:4427–4440

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I (2002) Seismic inversion for the parameters of two orthogonal fracture sets in a VTI backgroound medium. Geophysics 67(1):292–299

    Article  Google Scholar 

  • Barruol G, Hoffmann R (1999) Upper mantle anisotropy beneath the geoscope stations. J Geophys Res 104:10757–10774

    Article  Google Scholar 

  • Blackman DK, Kendall J-M (1997) Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge. Philos Trans R Soc London, Ser A 355:217–231

    Article  Google Scholar 

  • Blackman DK, Orcutt JA, Forsyth DW, Kendall J-M (1993) Seismic anisotropy in the mantle beneath an oceanic spreading center. Nature 366:675–677

    Article  Google Scholar 

  • Boness NL, Zoback MD (2006) Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology 34:825–828

    Article  Google Scholar 

  • Brown LT (2002) Integration of rock physics and reservoir simulation for the interpretation of time-lapse seismic data at Weyburn field, Saskatchewan. Master’s thesis, Colorado School of Mines, Golden, Colorado.

    Google Scholar 

  • Brown RJS, Korringa J (1975) On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4):608–616

    Article  Google Scholar 

  • Bunge RJ (2000) Midale reservoir fracture characterization using integrated well and seismic data, Weyburn field, Saskatchewan. Master’s thesis, Colorado School of Mines, Golden, Colorado.

    Google Scholar 

  • Crampin S (1991) A decade of shear-wave splitting in the earth’s crust: what does it mean? what use can we make of it? and what should we do next?. Geophys J Int 107:387–407

    Article  Google Scholar 

  • Crampin S, Peacock S (2008) A review of the current understanding of seismic shear-wave splitting in the earth’s crust and common fallacies in interpretation. Wave Motion 45:675–722

    Article  Google Scholar 

  • Crampin S, Gao Y, Peacock S (2008) Stress-forcasting (not predicting) earthquakes: a paradigm shift?. Geology 36:427–430

    Article  Google Scholar 

  • Gassmann F (1951) Uber die elastizitat poroser medien. Vierteljahresschrift der Naturforschenden Gesellschaft in Zurich 96:1–23

    Google Scholar 

  • Grechka V (2007) Multiple cracks in VTI rocks: effective properties and fracture characterisation. Geophysics 72(5):D81–D91

    Article  Google Scholar 

  • Grechka V, Tsvankin I (2003) Feasibility of seismic characterisation of multiple fracture sets. Geophysics 68(4):1399–1407

    Article  Google Scholar 

  • Hall SA, Kendall J-M (2000) Constraining the interpretation of AVOA for fracture characterisation. In: Ikelle L, Gangi A (eds) Anisotropy 2000 Fractures Converted Waves and Case Studies. Society of Exploration Geophysics, pp 107–144

    Google Scholar 

  • Hall SA, Kendall J-M, Maddock J, Fisher Q (2008) Crack density tensor inversion for analysis of changes in rock frame architecture. Geophys J Int 173:577–592

    Article  Google Scholar 

  • Horne S, MacBeth C (1994) Inversion for seismic anisotropy using genetic algorithms. Geophys Prospect 42:953–974

    Article  Google Scholar 

  • Hudson JA (1981) Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J R Astron Soc 64:133–150

    Google Scholar 

  • Hudson JA, Liu E, Crampin S (1996) The mechanical properties of materials with interconnected cracks and pores. Geophys J Int 124:105–112

    Article  Google Scholar 

  • Hudson JA, Pointer T, Liu E (2001) Effective medium theories for fluid saturated materials with aligned cracks. Geophys Prospect 49:509–522

    Article  Google Scholar 

  • Kendall J-M, Stuart GW, Ebinger CJ, Bastow ID, Keir D (2005) Magma assisted rifting in Ethiopia. Nature 433:146–148

    Article  Google Scholar 

  • Kendall J-M, Pilidou S, Keir D, Bastow ID, Stuart GW, Ayele A (2006) Mantle upwellings, melt migration and magma assisted rifting in Africa: insights from seismic anisotropy. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) Structure and evolution of the rift systems within the Afar volcanic province, Northeast Africa, vol 259. Geological Society of London Special Publication, pp 57–74

    Google Scholar 

  • Kendall J-M, Fisher QJ, Covey Crump S, Maddock J, Carter A, Hall SA, Wookey J, Valcke S, Casey M, Lloyd G, Ben Ismail W (2007) Seismic anisotropy as an indicator of reservoir quality of siliclastic rocks. In: Jolley S, Barr D, Walsh J, Knipe R (eds) Structurally complex reservoirs, vol 292. Geological Society of London Special Publication, pp 123–136

    Google Scholar 

  • Pointer T, Liu E, Hudson JA (2000) Seismic wave propagation in cracked porous media. Geophys J Int 142:199–231

    Article  Google Scholar 

  • Rathore JS, Fjaer E, Holt RM, Renlie L (1994) P- and S-wave anisotropy of a synthetic sandstone with controlled crack geometry. Geophys Prospect 43:711–728

    Article  Google Scholar 

  • Rial JA, Elkibbi M, Yang M (2005) Shear-wave splitting as a tool for the characterization of geothermal fractured reservoirs: lessons learned. Geothermics 34:365–385

    Article  Google Scholar 

  • Rümpker G, Tommasi A, Kendall J-M (1999) Numerical simulations of depth-dependent anisotropy and frequency-dependent wave propagation effects. J Geophys Res 104:23141–23153

    Article  Google Scholar 

  • Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60(1):204–211

    Article  Google Scholar 

  • Silver PG, Chan WWJ (1991) Shear-wave splitting and subcontinental mantle deformation. J Geophys Res 96:16429–16454

    Article  Google Scholar 

  • Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333

    Article  Google Scholar 

  • Teanby NA, Kendall J-M, Jones RH, Barkved O (2004) Stress-induced temporal variations in seismic anisotropy observed in microseismic data. Geophys J Int 156:459–466

    Article  Google Scholar 

  • Teanby NA, Kendall J-M, van der Baan M (2004) Automation of shear-wave splitting measurements using cluster analysis. Bull Seismol Soc Am 94(2):453–463

    Article  Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966

    Article  Google Scholar 

  • Valcke SLA, Casey M, Lloyd GE, Kendall J-M, Fisher QJ (2006) Lattice preferred orientation and seismic anisotropy in sedimentary rocks. Geophys J Int 166:652–666

    Article  Google Scholar 

  • Verdon JP, Kendall J-M (2011) Detection of multiple fracture sets using observations of shear-wave splitting in microseismic data. Geophys Prospect 59:593–608

    Article  Google Scholar 

  • Verdon JP, Angus DA, Kendall J-M, Hall SA (2008) The effects of microstructure and nonlinear stress on anisotropic seismic velocities. Geophys 73(4):D41–D51

    Article  Google Scholar 

  • Verdon JP, Kendall J-M, Wüstefeld A (2009) Imaging fractures and sedimentary fabrics using shear wave splitting measurements made on passive seismic data. Geophys J Int 179(2):1245–1254

    Article  Google Scholar 

  • Verdon JP, White DJ, Kendall J-M, Angus DA, Fisher Q, Urbancic T (2010) Passive seismic monitoring of carbon dioxide storage at Weyburn. The Leading Edge 29(2):200–206

    Article  Google Scholar 

  • Verdon JP, Kendall J-M, Maxwell SC (2010a) A comparison of passive seismic monitoring of fracture stimulation due to water versus \(\hbox{CO}_{2}\) injection. Geophysics 75(3):MA1–MA7

    Google Scholar 

  • Wookey J (2011) Direct probabilistic inversion of shear-wave data for anisotropy. Geophysical Research Abstracts, EGU General Assembly

    Google Scholar 

  • Wookey J, Helffrich GR (2008) Inferences on inner-core shear-wave anisotropy and texture from an observation of PKJKP waves. Nature 454:873–876

    Article  Google Scholar 

  • Wüstefeld A, Bokelmann G (2007) Null detection in shear-wave splitting measurements. Bull Seismol Soc Am 97(4):1204–1211

    Article  Google Scholar 

  • Wüstefeld A, Al-Harrasi O, Verdon JP, Wookey J, Kendall J-M (2010) A strategy for automated analysis of passive microseismic data to study seismic anisotropy and fracture characteristics. Geophys Prospect 58(5):755–773

    Article  Google Scholar 

  • Wustefeld A, Verdon JP, Kendall J-M, Rutledge J, Clarke H, Wookey J (2011a) Inferring rock fracture evolution during reservoir stimulation from seismic anisotropy. Geophysics, accepted.

    Google Scholar 

  • Wustefeld A, Kendall J-M, Verdon JP, van Aas, A (2011b) In situ monitoring of rock fracturing using shear-wave splitting analysis: An example from a mining setting. Geophys J Inter 187:848-860

    Google Scholar 

  • Zatsepin S, Crampin S (1997) Modelling the compliance of crustal rock-I. Response of shear-wave splitting to differential stress. Geophys J Int 129:477–494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Verdon .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag-Berlin Heidelberg

About this chapter

Cite this chapter

Verdon, J.P. (2012). Inverting Shear-Wave Splitting Measurements for Fracture Properties. In: Microseismic Monitoring and Geomechanical Modelling of CO2 Storage in Subsurface Reservoirs. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25388-1_3

Download citation

Publish with us

Policies and ethics