Skip to main content

Certified Security Proofs of Cryptographic Protocols in the Computational Model: An Application to Intrusion Resilience

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7086))

Abstract

Security proofs for cryptographic systems can be carried out in different models which reflect different kinds of security assumptions. In the symbolic model, an attacker cannot guess a secret at all and can only apply a pre-defined set of operations, whereas in the computational model, he can hope to guess secrets and apply any polynomial-time operation. Security properties in the computational model are more difficult to establish and to check.

In this paper we present a framework for certified proofs of computational indistinguishability, written using the Coq proof assistant, and based on CIL, a specialized logic for computational frames that can be applied to primitives and protocols. We demonstrate how CIL and its Coq-formalization allow proofs beyond the black-box security framework, where an attacker only uses the input/output relation of the system by executing on chosen inputs without having additional information on the state. More specifically, we use it to prove the security of a protocol against a particular kind of side-channel attack which aims at modeling leakage of information caused by an intrusion into Alice and Bob’s computers.

This work has been partially supported by the ANR SCALP project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alwen, J., Dodis, Y., Wichs, D.: Survey: Leakage Resilience and the Bounded Retrieval Model. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS, vol. 5973, pp. 1–18. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Science of Computer Programming 74(8), 568–589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistinguishability logic. In: Proceedings of the 17th ACM Conference on Computer and Communications Security. ACM, New York (2010)

    Google Scholar 

  4. Barthes, G., Duclos, M., Lakhnech, Y.: A computational indistinguishability logic for the bounded storage model. In: FPS 2011 (2011)

    Google Scholar 

  5. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: Proceedings of POPL 2009, pp. 90–101 (2009)

    Google Scholar 

  6. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: 14th IEEE Computer Security Foundations Workshop (CSFW-14), Cape Breton, Nova Scotia, Canada, pp. 82–96. IEEE Computer Society (June 2001)

    Google Scholar 

  7. Blanchet, B.: A computationally sound mechanized prover for security protocols. In: IEEE Symposium on Security and Privacy, pp. 140–154 (2006)

    Google Scholar 

  8. Cortier, V., Kremer, S., Warinschi, B.: A survey of symbolic methods in computational analysis of cryptographic systems. J. Autom. Reasoning, 1–35 (2010)

    Google Scholar 

  9. The Coq Proof Assistant, http://coq.inria.fr/

  10. Datta, A., Derek, A., Mitchell, J.C., Warinschi, B.: Computationally sound compositional logic for key exchange protocols. In: Proceedings of CSFW 2006, pp. 321–334 (2006)

    Google Scholar 

  11. Dziembowski, S., Maurer, U.: Optimal randomizer efficiency in the bounded-storage model. Journal of Cryptology 17(1), 5–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 293–302 (2008)

    Google Scholar 

  13. Dziembowski, S.: Intrusion-Resilience Via the Bounded-Storage Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Impagliazzo, R., Kapron, B.: Logics for reasoning about cryptographic constructions. Journal of Computer and Systems Sciences 72(2), 286–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  16. Kiltz, E., Pietrzak, K.: Leakage Resilient ElGamal Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryptology 5(1), 53–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Micali, S., Reyzin, L.: Physically Observable Cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Micali, S., Reyzin, L.: Physically Observable Cryptography (extended abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Rogaway, P., Bellare, M.: Optimal asymmetric encryption how to encrypt with rsa (1995)

    Google Scholar 

  21. Zhang, Y.: The computational SLR: a logic for reasoning about computational indistinguishability. IACR ePrint Archive 2008/434, 2008. Also in Proc. of Typed Lambda Calculi and Applications (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corbineau, P., Duclos, M., Lakhnech, Y. (2011). Certified Security Proofs of Cryptographic Protocols in the Computational Model: An Application to Intrusion Resilience. In: Jouannaud, JP., Shao, Z. (eds) Certified Programs and Proofs. CPP 2011. Lecture Notes in Computer Science, vol 7086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25379-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25379-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25378-2

  • Online ISBN: 978-3-642-25379-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics