Skip to main content

Optical Mode-field Adaptation

  • Chapter
  • First Online:
  • 1375 Accesses

Abstract

The optical coupling between the various optical components requires low coupling loss and low reflection. Very often is the application of ray optics not useful, but the wave observation of light must be used. In most cases, the optical modes of the components (laser, fiber, waveguide) will be described in the form of a Gaussian distribution, and all coupling efficiencies will be calculated with the aid of an overlap integral. The biggest problem occurs by mechanical adjustment of the components and the long-term stability of the coupling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal, G.P.: Fiber-Optic Communications Systems. Wiley, New York (1992)

    Google Scholar 

  • Andersen, W.T.: Consistency of measurement methods for the mode field radius in a single-mode fiber. IEEE J. Lightwave Technol. 2(2), 191–197 (1984)

    Article  Google Scholar 

  • Bludau, W.: Lichtwellenleiter in Sensorik und optischer Nachrichtentechnik. Springer, Berlin (1998)

    Google Scholar 

  • G.650 I-TR (1994) Transmission media characteristics: definition and test methods for the relevant parameters of single-mode fibres

    Google Scholar 

  • Geckeler, S.: Lichtwellenleiter für die optische Nachrichtenübertragung. Springer, Berlin (1990)

    Book  Google Scholar 

  • Green, P.E.: Fibre Optic Networks: Prentice Hall. Englewood Cliffs, New Jersey 07632 (1993)

    Google Scholar 

  • He, Y., Shi, F.: Beam Propagation Method and Microlens Design for Optical Coupling. VDM Verlag Dr. Müller, Saarbrücken (2010)

    Google Scholar 

  • Ishii, M., Hibino, Y., Hanawa, F., Nakagome, H., Kato, K.: Packaging and environmental stability of thermally controlled arrayed-waveguide grating multiplexer module with thermoelectric device. J. Lightwave Technol. 16(2), 258 (1998)

    Article  Google Scholar 

  • Kawano, K., Saruwatari, M.: A new confocal combination lens methods for a laser-diode module using a single-mode-coupler. J. Lightwave Technol. LT-3(4), 739–745 (1985)

    Google Scholar 

  • Kogelnik, H.: Coupling and conversion coefficients for optical modes. Proc. Symp. Quasi-Opt 14, 333–347 (1964)

    Google Scholar 

  • Kogelnik, H.: On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation. Appl. Opt. 4(12), 1562–1569 (1965)

    Article  Google Scholar 

  • Kogelnik, H.: Theory of Optical Waveguides. Springer, Berlin (1975)

    Google Scholar 

  • Kogelnik, H., Li, T.: Laser beams and resonators. Proc. IEEE 54, 1312–1329 (1966)

    Article  Google Scholar 

  • Kuhmann, J.: Untersuchung von Flip-Chip-Bondprozessen zur selbstjustierenden, flussmittelfreien Montage von OEICs. Ph.D. thesis/dissertation, Heinrich-Hertz-Institute, Berlin (1998)

    Google Scholar 

  • Mahlke, G., Gössing, P.: Lichtwellenleiterkabel. 4. Auflage edn. Publicis Corporate Publishing (1995)

    Google Scholar 

  • Marcuse, D.: Light Transmission Optics. Van Nostrand Reinhold, New York (1972)

    Google Scholar 

  • Marcuse, D.: Theory of Dielectric Waveguides. Academic Press, New York (1974)

    Google Scholar 

  • Marcuse, D.: Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 15 (1977)

    Google Scholar 

  • Marcuse, D.: Gaussian approximation of the fundamental modes of graded-index fibers. J. Opt. Soc. AM 68(1), 103–109 (1978)

    Article  Google Scholar 

  • März, R.: Integrated Optics: Design and Modeling. Artech House, Boston (1995)

    Google Scholar 

  • Maxwell, J.C.: A Dynamical Theory of the Electromagnetic Field. Scottish Academy Press, Edinburgh (1982)

    Google Scholar 

  • Maxwell, J.C.: Über Faradays Kraftlinien (1855/1856). Ostwalds Klassiker der exakten Wissenschaften, vol. 69. Reprint [der Ausg. Leipzig, Akad. Verl.-Ges., 1898], 3. Aufl. edn. Deutsch, Frankfurt am Main (2001)

    Google Scholar 

  • Maxwell, J.C., Boltzmann, L.: Über Faradays Kraftlinien (1855/1856). Ostwalds Klassiker der exakten Wissenschaften, vol. 69, 44., erw. Aufl. edn. Deutsch, Frankfurt (2008)

    Google Scholar 

  • Maxwell, J.C., Boltzmann, L.: Über Faradays Kraftlinien (Trans. t. Camb. Phil. Soc., vol. 10, p. 27, gelesen am 10. Dec. 1–855 u. 11. Feb. 1856, Maxw. Scient. Pap., vol. 1, p. 155). Ostwald’s Klassiker d exakten Wiss, vol Nr 69, 2.Aufl.,unveränd.Nachdr. edn. Akad.Verl.-Ges., Leipzig (1895)

    Google Scholar 

  • Neumann, E.G.: Single-Mode Fiber: Fundamentals. Springer, Berlin (1998)

    Google Scholar 

  • Opielka, D.: Optische Nachrichtentechnik. Vieweg Verlag (1995)

    Google Scholar 

  • Petermann, K.: Microbending loss in monomode fibres. Electron. Lett. 12(4), 107–109 (1976)

    Article  Google Scholar 

  • Petermann, K.: Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibres. Electron. Lett. 19(18), 712–714 (1983)

    Article  Google Scholar 

  • Reider, G.: Photonik—Eine Einführung in die Grundlagen. Springer, Heidelberg (1997)

    Google Scholar 

  • Saruwatari, M., Kawate, K.: Semiconductor laser to single mode fiber coupler. Appl. Opt. 18(11), 1847–1856 (1979). doi:10.1364/AO.18.001847

    Article  Google Scholar 

  • Saruwatari, M., Nawata, K.: Semiconductor laser to single-mode fiber coupler. Appl. Opt. 18, 9 (1979)

    Article  Google Scholar 

  • Saruwatari, M., Sugie, T.: Efficient laser diode to single-mode fiber coupling using a combination of two lenses in confocal condition. IEEE J. Quantum Electron. 6, 7 (1981)

    Google Scholar 

  • Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, New York (1983)

    Google Scholar 

  • Streckert, J., Brinkmeyer, E.: Characteristic parameters of monomode fibers. Appl. Opt. 21(11), 1910–1915 (1982)

    Article  Google Scholar 

  • Wengelink, J.: Photolithographie mit semitransparenten Masken, Ph.D., Cuvillier Verlag, Göttingen (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H. P. Fischer-Hirchert .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer-Hirchert, U.H.P. (2015). Optical Mode-field Adaptation. In: Photonic Packaging Sourcebook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25376-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25376-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25375-1

  • Online ISBN: 978-3-642-25376-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics