Advertisement

Heat Kernel Smoothing via Laplace-Beltrami Eigenfunctions and Its Application to Subcortical Structure Modeling

  • Seung-Goo Kim
  • Moo K. Chung
  • Seongho Seo
  • Stacey M. Schaefer
  • Carien M. van Reekum
  • Richard J. Davidson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7087)

Abstract

We present a new subcortical structure shape modeling framework using heat kernel smoothing constructed with the Laplace-Beltrami eigenfunctions. The cotan discretization is used to numerically obtain the eigenfunctions of the Laplace-Beltrami operator along the surface of subcortical structures of the brain. The eigenfunctions are then used to construct the heat kernel and used in smoothing out measurements noise along the surface. The proposed framework is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shape. We detected a significant age effect on hippocampus in accordance with the previous studies. In addition, we also detected a significant gender effect on amygdala. Since we did not find any such differences in the traditional volumetric methods, our results demonstrate the benefit of the current framework over traditional volumetric methods.

Keywords

Heat Kernel Subcortical Structure Total Brain Volume Human Brain Mapping Mesh Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    LeDoux, J.: The amygdala. Current Biology 17(20), R868–R874 (2007)Google Scholar
  2. 2.
    Alvarez, P., Squire, L.R.: Memory consolidation and the medial temporal lobe: a simple network model. Proceedings of the National Academy of Sciences 91(15), 7041–7045 (1994)CrossRefGoogle Scholar
  3. 3.
    Miller, A., Alston, R., Corsellis, J.: Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropathology and Applied Neurobiology 6(2), 119–132 (1980)CrossRefGoogle Scholar
  4. 4.
    Good, C., Johnsrude, I., Ashburner, J., Henson, R., Friston, K., Frackowiak, R.: A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14(1), 21–36 (2001)CrossRefGoogle Scholar
  5. 5.
    Walhovd, K., Westlye, L., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Salat, D., Greve, D., Fischl, B., et al.: Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging (2009)Google Scholar
  6. 6.
    Bigler, E., Blatter, D., Anderson, C., Johnson, S., Gale, S., Hopkins, R., Burnett, B.: Hippocampal volume in normal aging and traumatic brain injury. American Journal of Neuroradiology 18(1), 11 (1997)Google Scholar
  7. 7.
    Du, A., Schuff, N., Chao, L., Kornak, J., Jagust, W., Kramer, J., Reed, B., Miller, B., Norman, D., Chui, H., et al.: Age effects on atrophy rates of entorhinal cortex and hippocampus. Neurobiology of Aging 27(5), 733–740 (2006)CrossRefGoogle Scholar
  8. 8.
    Walhovd, K., Fjell, A., Reinvang, I., Lundervold, A., Dale, A., Eilertsen, D., Quinn, B., Salat, D., Makris, N., Fischl, B.: Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging 26(9), 1261–1270 (2005)CrossRefGoogle Scholar
  9. 9.
    Sullivan, E., Marsh, L., Mathalon, D., Lim, K., Pfefferbaum, A.: Age-related decline in mri volumes of temporal lobe gray matter but not hippocampus. Neurobiology of Aging 16(4), 591–606 (1995)CrossRefGoogle Scholar
  10. 10.
    Sullivan, E., Marsh, L., Pfefferbaum, A.: Preservation of hippocampal volume throughout adulthood in healthy men and women. Neurobiology of Aging 26(7), 1093 (2005)CrossRefGoogle Scholar
  11. 11.
    Good, C., Johnsrude, I., Ashburner, J., Henson, R., Friston, K., Frackowiak, R.: Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage 14(3), 685–700 (2001)CrossRefGoogle Scholar
  12. 12.
    Gur, R.C., Gunning-Dixon, F., Bilker, W.B., Gur, R.E.: Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cerebral Cortex 12(9), 998–1003 (2002)CrossRefGoogle Scholar
  13. 13.
    Chung, M.K., Worsley, K.J., Paus, T., Cherif, D.L., Collins, C., Giedd, J., Rapoport, J.L., Evans, A.C.: A unified statistical approach to deformation-based morphometry. NeuroImage 14, 595–606 (2001)CrossRefGoogle Scholar
  14. 14.
    Adler, R.: On excursion sets, tube formulas and maxima of random fields. Annals of Applied Probability, 1–74 (2000)Google Scholar
  15. 15.
    Worsley, K., Marrett, S., Neelin, P., Vandal, A., Friston, K., Evans, A., et al.: A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4(1), 58–73 (1996)CrossRefGoogle Scholar
  16. 16.
    Worsley, K., Evans, A., Marrett, S., Neelin, P.: A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism 12, 900 (1992)CrossRefGoogle Scholar
  17. 17.
    Smith, S.: Fast robust automated brain extraction. Human Brain Mapping 17(3), 143–155 (2002)CrossRefGoogle Scholar
  18. 18.
    Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)CrossRefGoogle Scholar
  19. 19.
    Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  20. 20.
    Chung, M.K., Worsley, K.J., Robbins, S., Paus, T., Taylor, J., Giedd, J.N., Rapoport, J.L., Evans, A.C.: Deformation-based surface morphometry applied to gray matter deformation. NeuroImage 18, 198–213 (2003)CrossRefGoogle Scholar
  21. 21.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  22. 22.
    Andrade, A., Kherif, F., Mangin, J., Worsley, K., Paradis, A., Simon, O., Dehaene, S., Le Bihan, D., Poline, J.B.: Detection of fmri activation using cortical surface mapping. Human Brain Mapping 12, 79–93 (2001)CrossRefGoogle Scholar
  23. 23.
    Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Transactions on Image Processing 7(3), 310–318 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Malladi, R., Ravve, I.: Fast Difference Schemes for Edge Enhancing Beltrami Flow. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 343–357. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Tang, B., Sapiro, G., Caselles, V.: Direction diffusion. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1245–1252 (1999)Google Scholar
  26. 26.
    Taubin, G.: Geometric signal processing on polygonal meshes. In: Eurographics 2000 – State of the Art Report (2000)Google Scholar
  27. 27.
    Joshi, A., Shattuck, D., Thompson, P., Leahy, R.: A parameterization-based numerical method for isotropic and anisotropic diffusion smoothing on non-flat surfaces. IEEE Transactions on Image Processing 18(6), 1358–1365 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lévy, B.: Laplace-beltrami eigenfunctions towards an algorithm that understands geometry. In: IEEE International Conference on Shape Modeling and Applications, SMI 2006, p. 13. IEEE (2006)Google Scholar
  29. 29.
    Chung, M., Robbins, S., Dalton, K., Davidson, R., Alexander, A., Evans, A.: Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage 25(4), 1256–1265 (2005)CrossRefGoogle Scholar
  30. 30.
    Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normals. In: IEEE Visualization Conference (2002)Google Scholar
  31. 31.
    Chung, M., Taylor, J.: Diffusion smoothing on brain surface via finite element method. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 432–435. IEEE (2004)Google Scholar
  32. 32.
    Qiu, A., Bitouk, D., Miller, M.: Smooth functional and structural maps on the neocortex via orthonormal bases of the laplace-beltrami operator. IEEE Transactions on Medical Imaging 25(10), 1296–1306 (2006)CrossRefGoogle Scholar
  33. 33.
    Zhang, H., van Kaick, O., Dyer, R.: Spectral methods for mesh processing and analysis. In: Eurographics 2007–State of the Art Reports, pp. 1–22 (2007)Google Scholar
  34. 34.
    Chung, M.K., Worsley, K.J., Nacewicz, B.M., Dalton, K.M., Davidson, R.J.: General multivariate linear modeling of surface shapes using surfstat. NeuroImage 53(2), 491–505 (2010)CrossRefGoogle Scholar
  35. 35.
    Qiu, A., Miller, M.: Multi-structure network shape analysis via normal surface momentum maps. NeuroImage 42(4), 1430–1438 (2008)CrossRefGoogle Scholar
  36. 36.
    Xu, Y., Valentino, D., Scher, A., Dinov, I., White, L., Thompson, P., Launer, L., Toga, A.: Age effects on hippocampal structural changes in old men: the haas. NeuroImage 40(3), 1003–1015 (2008)CrossRefGoogle Scholar
  37. 37.
    Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N., Habel, U., Schneider, F., Zilles, K.: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anatomy and Embryology 210(5), 343–352 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Seung-Goo Kim
    • 1
  • Moo K. Chung
    • 1
    • 2
    • 3
  • Seongho Seo
    • 1
  • Stacey M. Schaefer
    • 3
  • Carien M. van Reekum
    • 5
  • Richard J. Davidson
    • 3
    • 4
  1. 1.Department of Brain and Cognitive SciencesSeoul National UniversityKorea
  2. 2.Department of Biostatistics and Medical InformaticsUniversity of WisconsinMadisonUSA
  3. 3.Waisman Laboratory for Brain Imaging and BehaviorUniversity of WisconsinMadisonUSA
  4. 4.Department of Psychology and PsychiatryUniversity of WisconsinMadisonUSA
  5. 5.Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingUK

Personalised recommendations