Advertisement

Improved Entropy Coder in H.264/AVC for Lossless Residual Coding in the Spatial Domain

  • Jin Heo
  • Yo-Sung Ho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7087)

Abstract

Since a block-based frequency transform is applied to residual data in lossy coding, it can reduce the spatial correlation efficiently. However, since residual data obtained from prediction is directly encoded without transform and quantization in lossless coding, there are some differences of the statistical properties in residuals between lossy and lossless coding. Based on the statistical characteristics of residuals in the spatial domain, we proposed an efficient context-based adaptive binary arithmetic coder (CABAC) for lossless residual coding. Experimental results show that the proposed CABAC provided approximately 19% bit saving, compared to the conventional CABAC.

Keywords

context-based adaptive binary arithmetic coding (CABAC) H.264/AVC lossless coding intra coding 

References

  1. 1.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 560–576 (2003)CrossRefGoogle Scholar
  2. 2.
    Sullivan, G.J., Wiegand, T.: Video compression–from concepts to the H.264/AVC standard. Proc. IEEE 93(1), 18–31 (2005)CrossRefGoogle Scholar
  3. 3.
    Sullivan, G.J., Topiwala, P., Luthra, A.: The H.264/AVC advanced video coding standard: Overview and introduction to the fidelity range extensions. In: Proc. SPIE Conf., Special Session Adv. New Emerg. Standard: H.264/AVC, pp. 454–474 (2004)Google Scholar
  4. 4.
    Lee, Y.L., Han, K.H., Sullivan, G.J.: Improved lossless intra coding for H.264/MPEG-4 AVC. IEEE Transactions on Image Processing 15(9), 2610–2615 (2006)CrossRefGoogle Scholar
  5. 5.
    Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16, Lossless Intra Coding for Improved 4:4:4 Coding in H.264/MPEG-4 AVC, document JVT-P016.doc (2005)Google Scholar
  6. 6.
    Heo, J., Kim, S.H., Ho, Y.S.: Improved CAVLC for H.264/AVC lossless intra-coding. IEEE Transactions on Circuits and Systems for Video Technology 20(2), 213–222 (2010)CrossRefGoogle Scholar
  7. 7.
    Marpe, D., Schwarz, H., Wiegand, T.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 620–636 (2003)CrossRefGoogle Scholar
  8. 8.
    Teuhola, J.: A compression method for clustered bit-vectors. Information Processing Letters 7, 308–311 (1978)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gallager, R.G., Van Voorhis, D.C.: Optimal source codes for geometrically distributed integer alphabets. IEEE Transactions on Information theory 21(2), 228–230 (1975)CrossRefzbMATHGoogle Scholar
  10. 10.
    Joint Video Team, Reference Software Version 16.2, http://iphome/hhi.de/shehring/tml/download/old_jm/jm16.2.zip Google Scholar
  11. 11.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Transactions on Image Processing 9(8), 1309–1324 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jin Heo
    • 1
  • Yo-Sung Ho
    • 1
  1. 1.School of Information and CommunicatitionsGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea

Personalised recommendations