Road Image Segmentation and Recognition Using Hierarchical Bag-of-Textons Method

  • Yousun Kang
  • Koichiro Yamaguchi
  • Takashi Naito
  • Yoshiki Ninomiya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7087)


While the bag-of-words models are popular and powerful method for generic object recognition, they discard the context information for spatial layout. This paper presents a novel method for road image segmentation and recognition using a hierarchical bag-of-textons method. The histograms of extracted textons are concatenated to regions of interest with multi-scale regular grid windows. This method can learn automatically spatial layout and relative positions between objects in a road image. Experimental results show that the proposed hierarchical bag-of-textons method can effectively classify not only the texture-based objects, e.g. road, sky, sidewalk, building, but also shape-based objects, e.g. car, lane, of a road image comparing the conventional bag-of-textons methods for object recognition. In the future, the proposed system can combine with a road scene understanding system for vehicle environment perception.


road image segmentation hierarchical bag-of-textons multi-scale 


  1. 1.
    Bertozzi, M., Broggi, A., Fascioli, A.: Vision-based Intelligent Vehicles: state of the art and perspectives. Journal of Robotics and Autonomous Systems 32(1), 1–16 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bertozzi, M., Broggi, A., Cellario, M., Fascioli, A., Lombardi, P., Porta, M.: Artificial vision in road vehicles. Proc. IEEE 90(7), 1258–1271 (2002)CrossRefGoogle Scholar
  3. 3.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Proc. ECCV Int. Workshop on Statistical Learning in Computer Vision (2004)Google Scholar
  4. 4.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  5. 5.
    Winn, J., Shotton, J.: The layout consistent random field for recognizing and segmenting partially occluded objects. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2006)Google Scholar
  6. 6.
    Shotton, J., Johnson, M., Cipolla, R.: Semantic Texton Forests for Image Categorization and Segmentation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2008)Google Scholar
  7. 7.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2006)Google Scholar
  8. 8.
    Kang, Y., Kidono, K., Naito, T., Ninomiya, Y.: Multiband image segmentation and object recognition using texture filter banks. In: Proc. Int. Conf. on Pattern Recognition (2008)Google Scholar
  9. 9.
    Varma, M., Zisserman, A.: A Statistical Approach to Texture Classification from Single Images. Int. Journal of Computer Vision 62(1-2), 61–81 (2005)CrossRefGoogle Scholar
  10. 10.
    Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. Journal of Computer Vision 43(1), 7–27 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Winn, J., Criminisi, A., Minka, T.: Object Categorization by Learned Universal Visual Dictionary. In: Proc. IEEE Int. Conf. on Computer Vision (2005)Google Scholar
  12. 12.
    Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in highdimensional spaces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (1997)Google Scholar
  13. 13.
    Jamie Shotton’s web site,
  14. 14.
    Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(5), 854–869 (2007)CrossRefGoogle Scholar
  16. 16.
    Boykov, Y., Jolly, M.P.: Interactive Graph Cuts for optimal boundary and region segmentation of objects in N-D images. In: Proc. Int. Conf. on Computer Vision (2001)Google Scholar
  17. 17.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical View of Boosting. Annals of Statistics 28(2), 337–407 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kumar, S., Hebert, M.: A hierarchical field framework for unified context-based classification. In: Proc. of International Conference on Computer Vision (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yousun Kang
    • 1
  • Koichiro Yamaguchi
    • 2
  • Takashi Naito
    • 2
  • Yoshiki Ninomiya
    • 2
  1. 1.Tokyo Polytechnic UniversityJapan
  2. 2.Toyota Central R&D Labs., Inc.Japan

Personalised recommendations