Ray Divergence-Based Bundle Adjustment Conditioning for Multi-view Stereo

  • Mauricio Hess-Flores
  • Daniel Knoblauch
  • Mark A. Duchaineau
  • Kenneth I. Joy
  • Falko Kuester
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7087)


An algorithm that shows how ray divergence in multi-view stereo scene reconstruction can be used towards improving bundle adjustment weighting and conditioning is presented. Starting with a set of feature tracks, ray divergence when attempting to compute scene structure for each track is first obtained. Assuming accurate feature matching, ray divergence reveals mainly camera parameter estimation inaccuracies. Due to its smooth variation across neighboring feature tracks, from its histogram a set of weights can be computed that can be used in bundle adjustment to improve its convergence properties. It is proven that this novel weighting scheme results in lower reprojection errors and faster processing times than others such as image feature covariances, making it very suitable in general for applications involving multi-view pose and structure estimation.


Multi-view reconstruction ray divergence weighted bundle adjustment confidence ellipsoids image feature covariances 


  1. 1.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo Tourism: Exploring Photo Collections in 3D. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 835–846. ACM, New York (2006)Google Scholar
  2. 2.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal On Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Lourakis, M., Argyros, A.: The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm. Technical Report 340, Institute of Computer Science - FORTH, Heraklion, Crete, Greece (2000)Google Scholar
  4. 4.
    Knoblauch, D., Hess-Flores, M., Duchaineau, M., Kuester, F.: Factorization of Correspondence and Camera Error for Unconstrained Dense Correspondence Applications. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 720–729. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Rodehorst, V., Heinrichs, M., Hellwich, O.: Evaluation of Relative Pose Estimation Methods for Multi-Camera Setups. In: International Archives of Photogrammetry and Remote Sensing (ISPRS 2008), Beijing, China, pp. 135–140 (2008)Google Scholar
  6. 6.
    Zhao, W., Nandhakumar, N.: Effects of Camera Alignment Errors on Stereoscopic Depth Estimates. Pattern Recognition 29, 2115–2126 (1996)CrossRefGoogle Scholar
  7. 7.
    Strecha, C., von Hansen, W., Gool, L.J.V., Fua, P., Thoennessen, U.: On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery. In: CVPR 2008, pp. –1–1 (2008)Google Scholar
  8. 8.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar
  9. 9.
    Beder, C., Steffen, R.: Determining an Initial Image Pair for Fixing the Scale of a 3D Reconstruction From an Image Sequence. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 657–666. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Brooks, M.J., Chojnacki, W., Gawley, D., van den Hengel, A.: What Value Covariance Information in Estimating Vision Parameters? In: ICCV 2001, pp. 302–308 (2001)Google Scholar
  11. 11.
    Zeisl, B., Georgel, P., Schweiger, F., Steinbach, E., Navab, N.: Estimation of Location Uncertainty for Scale Invariant Features Points. In: BMVC 2009, pp. xx–yy (2009)Google Scholar
  12. 12.
    Lindstrom, P.: Triangulation Made Easy. In: CVPR, 1554–1561 (2010)Google Scholar
  13. 13.
    Knoblauch, D., Hess-Flores, M., Duchaineau, M., Joy, K.I., Kuester, F.: Non-Parametric Sequential Frame Decimation in Low-Memory Streaming Environments. In: 7th International Symposium on Visual Computing, Las Vegas, Nevada, pp. 363–374 (2011)Google Scholar
  14. 14.
    Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual Modeling with a Hand-Held Camera. International Journal of Computer Vision 59, 207–232 (2004)CrossRefGoogle Scholar
  15. 15.
    Furukawa, Y., Ponce, J.: Accurate, Dense, and Robust Multi-View Stereopsis. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mauricio Hess-Flores
    • 1
  • Daniel Knoblauch
    • 2
  • Mark A. Duchaineau
    • 3
  • Kenneth I. Joy
    • 1
  • Falko Kuester
    • 2
  1. 1.Institute for Data Analysis and VisualizationUniversity of CaliforniaDavisUSA
  2. 2.University of CaliforniaSan DiegoUSA
  3. 3.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations