Skip to main content

(Ir)reversibility and Entropy

  • Conference paper
Nonlinear Partial Differential Equations

Part of the book series: Abel Symposia ((ABEL,volume 7))

  • 2913 Accesses

Abstract

In the 1860’s emerges a revolutionary idea: many properties of the world around us can be explained by combining the atomistic hypothesis with the statistical theory. Some of the great scientific conquests from this time are the Boltzmann equation, which triggers one of the first qualitative studies of a complicated nonlinear partial differential equation; the notion of statistical entropy, which would later be fundamental in other areas of physics and mathematics, including information theory; and the notion of macroscopic irreversibility emerging from microscopically reversible laws. Thus the basic rules of statistical physics were set until Boltzmann’s irreversibility paradigm was shaken by Landau’s discovery of the Landau damping effect, about 80 years later, which opened the idea that equilibration is compatible with preservation of information, and led to a number of problems concerning the statistical theory of matter.

La cosa più meravigliosa è la felicità del momento

L. Ferré

Reprinted, with kind permission, from: Duplantier, B. (ed.): Time—Poincaré Seminar 2010. Progress in Mathematical Physics, vol. 63, pp. 19–79. © Springer Basel AG 2012.

Translated by Lester Senechal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Even if this formula accurately reflects Boltzmann’s thoughts, it was Planck who first wrote it in this particular form, around 1900.

  2. 2.

    The monography [27] was incomplete at the time of Carleman’s passing away, and was completed by Carleson.

  3. 3.

    This program culminates in a recent manuscript by Mischler and Mouhot.

  4. 4.

    According to a personal communication by Mouhot, there are clues that Sturm’s measure may be too singular to do the job.

  5. 5.

    In real life, I think it likely that the validity of the Boltzmann equation is longer, because of slight non-Newtonian randomness, like quantum perturbations, which “renew” the equation; but this does not invalidate the reasoning.

  6. 6.

    Maxwell’s Demon has been the object of many discussions, in particular by Smoluchowski, Szilard, Gabor, Brillouin, Landauer and Bradbury; it has also inspired novelists like Pynchon. A recent paper by Binder and Danchin suggests to look for such concepts in the heart of living mechanisms.

References

  1. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152, 327–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandre, R., Villani, C.: On the Boltzmann equation for long-range interaction and the Landau approximation in plasma physics. Commun. Pure Appl. Math. 55(1), 30–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandre, R., Villani, C.: On the Landau approximation in plasma physics. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21(1), 61–95 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gangbo, W.: Hamiltonian ODE’s in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 51, 18–53 (2007)

    MathSciNet  Google Scholar 

  5. Arkeryd, L., Esposito, R., Pulvirenti, M.: The Boltzmann equation for weakly inhomogeneous data. Commun. Math. Phys. 111(3), 393–407 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Backus, G.: Linearized plasma oscillations in arbitrary electron distributions. J. Math. Phys. 1, 178–191, 559 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balescu, R.: Irreversible processes in ionized gases. Phys. Fluids 3, 52–63 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balescu, R.: Statistical Mechanics of Charged Particles. Wiley-Interscience, New York (1963)

    MATH  Google Scholar 

  9. Balian, R.: Entropy, a protean concept. In: Poincaré Seminar 2, pp. 119–145. Birkhäuser, Basel (2003)

    Google Scholar 

  10. Balian, R.: Information in statistical physics. Stud. Hist. Philos. Mod. Phys. 36, 323–353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baranger, C., Mouhot, C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoam. 21, 819–841 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Batt, J., Rein, G.: Global classical solutions of the periodic Vlasov–Poisson system in three dimensions. C. R. Acad. Sci. Paris, Sér. I Math. 313(6), 411–416 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Ben Arous, G., Zeitouni, O.: Increasing propagation of chaos for mean field models. Ann. Inst. Henri Poincaré Probab. Stat. 35(1)s, 85–102 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bernstein, I.B., Greene, J.M., Kruskal, M.D.: Exact nonlinear plasma oscillations. Phys. Rev. 108(3), 546–550 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Binney, J., Tremaine, S.: Galactic Dynamics, 2nd edn. Princeton Series in Astrophysics. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  16. Bobylev, A.V., Cercignani, C.: On the rate of entropy production for the Boltzmann equation. J. Stat. Phys. 94(3–4), 603–618 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bobylev, A.V., Cercignani, C.: Exact eternal solutions of the Boltzmann equation. J. Stat. Phys. 106(5–6), 1019–1038 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bobylev, A.V., Cercignani, C.: Self-similar solutions of the Boltzmann equation and their applications. J. Stat. Phys. 106(5–6), 1039–1071 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bogoliubov, N.N.: Problems of a dynamical theory in statistical physics. Stud. Stat. Mech. 1, 1–118 (1962). Translation from the 1946 Russian original

    MathSciNet  Google Scholar 

  20. Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Relat. Fields 137(3–4), 541–593 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmoläkülen. Sitzungsber. Akad. Wiss. 66, 275–370 (1872). Traduction: Further studies on the thermal equilibrium of gas molecules. In: Brush, S.G. (ed.) Kinetic Theory, vol. 2, pp. 88–174. Pergamon, Oxford (1966)

    MATH  Google Scholar 

  22. Boltzmann, L.: Lectures on Gas Theory. University of California Press, Berkeley (1964). English translation by Stephen G. Brush. Reprint of the 1896–1898 edition. Dover Publications, 1995

    Google Scholar 

  23. Bouchut, F.: Introduction à la théorie mathématique des équations cinétiques. In: Bouchut, F., Golse, F., Pulvirenti, M. (eds.) Kinetic Equations and Asymptotic Theory. Session “L’Etat de la Recherche” de la SMF, 1998. Series in Appl. Math. Gauthier-Villars, Paris (2000)

    Google Scholar 

  24. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56, 125–146 (1977)

    Article  MathSciNet  Google Scholar 

  25. Caglioti, E., Maffei, C.: Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys. 92(1–2), 301–323 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Carleman, T.: Sur la théorie de l’equation intégrodifférentielle de Boltzmann. Acta Math. 60, 369–424 (1932)

    Google Scholar 

  27. Carleman, T.: Problèmes Mathématiques dans la Théorie Cinétique des Gaz. Almqvist & Wiksell, Stockholm (1957)

    MATH  Google Scholar 

  28. Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Carlen, E.A., Carvalho, M.C., Gabetta, E.: Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Commun. Pure Appl. Math. 53, 370–397 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Carlen, E.A., Carvalho, M.C., Gabetta, E.: On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Funct. Anal. 220, 362–387 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191, 1–54 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the Kac model. Kinet. Relat. Models 3(1), 85–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Carlen, E.A., Gabetta, E., Toscani, G.: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199(3), 521–546 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Carlen, E.A., Lu, M.: Fast and slow convergence to equilibrium Maxwellian molecules via Wild sums. J. Stat. Phys. 112(1–2), 59–134 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Carleson, L.: Some analytic problems related to statistical mechanics. In: Benedetto, J.J. (ed.) Euclidean Harmonic Analysis, Univ. of Maryland. Lecture Notes in Math., vol. 779, pp. 5–45 (1979)

    Chapter  Google Scholar 

  36. Cercignani, C.: On the Boltzmann equation with cutoff potentials. Phys. Fluids 10, 2097 (1967)

    Article  Google Scholar 

  37. Cercignani, C.: On the Boltzmann equation for rigid spheres. Transp. Theory Stat. Phys. 2(3), 211–225 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  39. Cercignani, C.: Rarefied Gas Dynamics. Cambridge University Press, Cambridge (2000). From basic concepts to actual calculations

    MATH  Google Scholar 

  40. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    MATH  Google Scholar 

  41. Cover, T.M., Thomas, J.A.: Elements of Information Theory. A Wiley-Interscience Publication. Wiley, New York (1991).

    Book  MATH  Google Scholar 

  42. Delcroix, J.-L., Bers, A.: Physique des plasmas, vol. 2. InterEditions/CNRS Éditions, Paris (1994)

    Google Scholar 

  43. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  44. Desvillettes, L.: Entropy dissipation rate and convergence in kinetic equations. Commun. Math. Phys. 123(4), 687–702 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials. Part I: existence, uniqueness and smoothness. Commun. Partial Differ. Equ. 25(1–2), 179–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. DiPerna, R., Lions, P.-L.: On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. of Math. (2) 130, 312–366 (1989)

    Article  MathSciNet  Google Scholar 

  48. Dobrušin, R.L.: Vlasov equations. Funkc. Anal. Prilozh. 13(2), 48–58, 96 (1979)

    Google Scholar 

  49. Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002). Revised edition of the 1989 original

    Book  MATH  Google Scholar 

  50. Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in Nlog2 N. SIAM J. Sci. Comput. 28(3), 1029–1053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    Book  MATH  Google Scholar 

  52. Glassey, R., Schaeffer, J.: Time decay for solutions to the linearized Vlasov equation. Transp. Theory Stat. Phys. 23(4), 411–453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  53. Glassey, R., Schaeffer, J.: On time decay rates in Landau damping. Commun. Partial Differ. Equ. 20(3–4), 647–676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  54. OTTHER Golse, F.: From kinetic to macroscopic models. In: Bouchut, F., Golse, F., Pulvirenti, M. (eds.) Kinetic Equations and Asymptotic Theory. Session “L’Etat de la Recherche” de la SMF, 1998. Series in Appl. Math. Gauthier-Villars, Paris (2000)

    Google Scholar 

  55. Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Grad, H.: On Boltzmann’s H-theorem. J. Soc. Ind. Appl. Math. 13(1), 259–277 (1965)

    Article  MathSciNet  Google Scholar 

  57. Grad, H.: Principles of the kinetic theory of gases. In: Flügge’s Handbuch des Physik, vol. XII, pp. 205–294. Springer, Berlin (1958)

    Google Scholar 

  58. Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization for non-symmetric operators and exponential H-theorem. Preprint. Available online at http://hal.archives-ouvertes.fr/ccsd-00495786

  59. Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434 (2002)

    Article  MATH  Google Scholar 

  60. Guo, Y., Strain, R.M.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187(2), 287–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum. Commun. Math. Phys. 105(2), 189–203 (1986). “Erratum and improved result”, Comm. Math. Phys. 121(1), 143–146 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  62. Illner, R., Pulvirenti, M.: A derivation of the BBGKY-hierarchy for hard sphere particle systems. Transp. Theory Stat. Phys. 16(7), 997–1012 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  63. Isichenko, M.: Nonlinear Landau damping in collisionless plasma and inviscid fluid. Phys. Rev. Lett. 78(12), 2369–2372 (1997)

    Article  Google Scholar 

  64. Jabin, P.-E., Hauray, M.: N-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183(3), 489–524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Janvresse, E.: Spectral gap for Kac’s model of Boltzmann equation. Ann. Probab. 29(1), 288–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  66. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, Berkeley and Los Angeles, 1956, pp. 171–197. University of California Press, Berkeley, (1956)

    Google Scholar 

  67. Landau, L.D.: Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sowjetunion 10, 154 (1936). English translation: The transport equation in the case of Coulomb interactions. In: Collected Papers of L.D. Landau, edited and with an introduction by D. ter Haar, Pergamon Press, pp. 163–170 (1965)

    MATH  Google Scholar 

  68. Landau, L.D.: On the vibration of the electronic plasma. J. Phys. USSR 10, 25 (1946). English translation in JETP 16, 574. Reprinted in Collected Papers of L.D. Landau, edited with an introduction by D. ter Haar, pp. 445–460. Pergamon Press, 1965; and in Men of Physics: L.D. Landau, vol. 2, Pergamon Press, D. ter Haar, ed. (1965)

    MATH  Google Scholar 

  69. Lanford, O.E.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications, Recontres, Battelle Res. Inst., Seattle, Wash., 1974, pp. 1–111. Lecture Notes in Phys., vol. 38. Springer, Berlin (1975).

    Chapter  Google Scholar 

  70. Lenard, A.: On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10, 390–400 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  71. Lifshitz, E.M., Pitaevskiĭ, L.P.: Course of Theoretical Physics [“Landau–Lifshits”], vol. 10. Pergamon Press, Oxford (1981). Translated from the Russian by J.B. Sykes and R.N. Franklin

    Google Scholar 

  72. Lin, Z., Zeng, C.: BGK waves and nonlinear Landau damping. Preprint (2010)

    Google Scholar 

  73. Liverani, C., Olla, S.: Toward the Fourier law for a weakly interacting anharmonic crystal. Preprint (2010)

    Google Scholar 

  74. Loschmidt, J.: Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft. Wien. Ber. 73, 128 (1876)

    Google Scholar 

  75. Lynden-Bell, D.: The stability and vibrations of a gas of stars. Mon. Not. R. Astron. Soc. 124(4), 279–296 (1962)

    MATH  Google Scholar 

  76. Lynden-Bell, D.: Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 136, 101–121 (1967)

    Google Scholar 

  77. Malmberg, J., Wharton, C.: Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett. 13(6), 184–186 (1964)

    Article  Google Scholar 

  78. Malmberg, J., Wharton, C., Gould, R., O’Neil, T.: Plasma wave echo experiment. Phys. Rev. Lett. 20(3), 95–97 (1968)

    Article  Google Scholar 

  79. Maslen, D.: The eigenvalues of Kac’s master equation. Math. Z. 243, 291–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  80. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. Ser. A 157, 49–88 (1867)

    Article  Google Scholar 

  81. McKean, H.J.: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Ration. Mech. Anal. 21, 343–367 (1966)

    Article  MathSciNet  Google Scholar 

  82. Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Commun. Math. Phys. 261, 629–672 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  83. Mouhot, C., Strain, R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. 87(5), 515–535 (2007)

    MathSciNet  MATH  Google Scholar 

  84. Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173(2), 169–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  85. Mouhot, C., Villani, C.: On Landau damping. Acta Math. doi:10.1007/s11511-011-0068-9. Available on line at arXiv:0904.2760

  86. O’Neil, T.: Collisionless damping of nonlinear plasma oscillations. Phys. Fluids 8(12), 2255–2262 (1965)

    Article  MathSciNet  Google Scholar 

  87. Neunzert, H.: An introduction to the nonlinear Boltzmann–Vlasov equation. In: Cercignani, C. (ed.) Kinetic Theories and the Boltzmann Equation, pp. 60–110. Lecture Notes in Math., vol. 1048. Springer, Berlin (1984)

    Chapter  Google Scholar 

  88. Penrose, O.: Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids 3, 258–265 (1960)

    Article  MATH  Google Scholar 

  89. Poincaré, H.: Le mécanisme et l’expérience. Rev. Métaphys. Morale I, 534–537 (1893)

    Google Scholar 

  90. OTTHER Pulvirenti, M.: From particle to transport equations. In: Bouchut, F., Golse, F., Pulvirenti, M. (eds.) Kinetic Equations and Asymptotic Theory. Session “L’Etat de la Recherche” de la SMF, 1998. Series in Appl. Math. Gauthier-Villars, Paris (2000)

    Google Scholar 

  91. Robert, R.: Statistical mechanics and hydrodynamical turbulence. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Zürich, 1994, pp. 1523–1531. Birkhäuser, Basel (1995)

    Chapter  Google Scholar 

  92. Ryutov, D.D.: Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion 41, A1–A12 (1999)

    Article  Google Scholar 

  93. Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Lectures at SISSA, Trieste, 2006. Lecture Notes in Math., vol. 1971. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  94. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  95. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin, (1991)

    Book  MATH  Google Scholar 

  96. Strain, R.M.: On the linearized Balescu–Lenard equation. Commun. Partial Differ. Equ. 32, 1551–1586 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  97. Sturm, K.-Th.: Entropic measure on multidimensional spaces. In: Dalang, R., Dozzi, M., Russo, F. (eds.) Stochastic Analysis, Random Fields and Applications VI. Progress in Probability. Birkhäuser, Basel (2011)

    Google Scholar 

  98. Sznitman, A.-S.: Equations de type de Boltzmann, spatialement homogènes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66, 559–562 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  99. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour, XIX, 1989, pp. 165–251. Lecture Notes in Math., vol. 1464. Springer, Berlin (1991)

    Chapter  Google Scholar 

  100. Tanaka, H.: An inequality for a functional of probability distributions and its application to Kac’s one-dimensional model of a Maxwellian gas. Z. Wahrscheinlichkeitstheor. Verw. Geb. 27, 47–52 (1973)

    Article  MATH  Google Scholar 

  101. Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  102. Turkington, B.: Statistical equilibrium measures and coherent states in two-dimensional turbulence. Commun. Pure Appl. Math. 52(7), 781–809 (1999)

    Article  MathSciNet  Google Scholar 

  103. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics I, pp. 71–305. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  104. Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, 455–490 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  105. Villani, C.: Mathematics of granular materials. J. Stat. Phys. 124(2–4), 781–822 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  106. Villani, C.: H-theorem and beyond: Boltzmann’s entropy in today’s mathematics. In: Conference Proceedings “Boltzmann’s Legacy”. Erwin-Schrödinger Institute, Vienna (2007)

    Google Scholar 

  107. Villani, C.: Hypocoercive diffusion operators. Text of my Lecture International Congress of Mathematicians, Madrid (2006)

    Google Scholar 

  108. Villani, C.: Entropy production and convergence to equilibrium. Notes pour une série de cours à l’Institut Henri Poincaré, Paris, automne 2001. In: Entropy Methods for the Boltzmann Equation, pp. 1–70. Lecture Notes in Math., vol. 1916. Springer, Berlin (2008)

    Chapter  Google Scholar 

  109. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 950 (2009)

    MathSciNet  Google Scholar 

  110. Villani, C.: Landau damping. Lecture notes, CEMRACS 2010. Available at www.math.univ-lyon1.fr/~villani

  111. Villani, C.: Is there any backward solution of the Boltzmann equation? Unpublished work, available at www.math.univ-lyon1.fr/~villani

  112. Vlasov, A.A.: On the oscillation properties of an electron gas. Zh. Èksp. Teor. Fiz. 8, 291–318 (1938)

    MATH  Google Scholar 

  113. Zermelo, E.: Über einen Satz der Dynamik und die mechanische Wärmetheorie. Ann. Phys. 54, 485–494 (1896)

    Article  Google Scholar 

  114. Horst, E.: On the asymptotic growth of the solutions of the Vlasov–Poisson system. Math. Methods Appl. Sci. 16, 75–86 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Villani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villani, C. (2012). (Ir)reversibility and Entropy. In: Holden, H., Karlsen, K. (eds) Nonlinear Partial Differential Equations. Abel Symposia, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25361-4_16

Download citation

Publish with us

Policies and ethics