Advertisement

Shock-Free and Spontaneous Initiation of Explosive Regimes

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Chapter
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

Processes of spontaneous detonation initiation in fuel-air mixtures can be grouped into two types:

Keywords

DDT Flame acceleration Gradient mechanism Spontaneous initiation 

References

  1. 1.
    W. Bartknecht, Explosions (Springer, Berlin/New York, 1981), p. 251CrossRefGoogle Scholar
  2. 2.
    Y.K. Liu, J.H. Lee, R. Knystautas, Effect of geometry on the transmission of detonation through an orifice. Combust. Flame 56(2), 215–225 (1984)CrossRefGoogle Scholar
  3. 3.
    W.B. Benedick, J.H. Lee, R. Knystautas, Large scale experiments on the transmission of fuel-air detonations from two-dimensional channels Progress. Astronautics and Aeronautics, in Dynamics of Shock Waves, Explosions and Detonations, ed. by J.R. Bowen, N. Manson, A.K. Oppenheim, R.I. Soloukhin, vol. 94 (AIAA, New York, 1984), pp. 546–555Google Scholar
  4. 4.
    W. Fickett, W.C. Davis, Detonation (University of California Press, Berkeley, 1979), p. 386Google Scholar
  5. 5.
    C.K. Westbrook, Chemical kinetics in gaseous detonations. in Proceedings of Fuel-Air Explosions, McGill University, 1982, pp. 189–244Google Scholar
  6. 6.
    Щeлкин К.И. К тeopии вoзникнoвeния дeтoнaции в гaзoвыx cмecяx в тpубax//Дoклaды AH CCCP. 1939. T. 23, No 4. C. 636 (K.I. Shchelkin, On theory of detonation onset in gaseous mixtures in tubes. Doklady AN SSSR 23(4), 636 (1939))Google Scholar
  7. 7.
    Щeлкин К.И. Bлияниe шepoxoвaтocти тpубы нa вoзникнoвeниe и pacпpocтpaнeниe дeтoнaции в гaзax//ЖЭTФ. 1940. T. 10. C. 823–832 (K.I. Shchelkin, Effect of roughness of the surface in a tube on origination and propagation of detonation in gas. Zh. Exper. Teoretich. Fiziki10, 823–832 (1940))Google Scholar
  8. 8.
    R.A. Strehlow, A. Cohen, Initiation of detonation. Phys. Fluids A 5(1), 97–101 (1962)CrossRefGoogle Scholar
  9. 9.
    P.A. Urtiew, A.K. Oppenheim, Experimental observations of the transition to detonation in an explosive gas. Proc. Roy. Soc. Lond. A 295, 13–28 (1966)CrossRefGoogle Scholar
  10. 10.
    J.H. Lee, The propagation of turbulent flames and detonations in tubes, in Advances in Chemical Reaction Dynamics, ed. by P.M. Rentzepis, C. Capellos (D. Reidel Publising company, Dordrecht, Holland, 1986) pp. 345–378CrossRefGoogle Scholar
  11. 11.
    M.A. Nettleton, D.M. Young, The propagation of flames in gases in large diameter pipes. in/Proceedings of 3rd International Symposium (European) on Combustion, 1973, p. 717Google Scholar
  12. 12.
    Coкoлик A.C. O мexaнизмe пpeддeтoнaциoннoгo уcкopeния плaмeни//ЖЭTФ. 1951. T. 21. C. 1172–1176 (A.S. Sokolik, The mechanism of predetonation acceleration of flame. Zh. Exper. Teoretich. Fiziki 21, 1172–1176 (1951))Google Scholar
  13. 13.
    Ya.B. Zeldovich, A.S. Kompaneets, Theory of Detonation (Academic, New York, 1960), p. 284Google Scholar
  14. 14.
    M. Wolinski, P. Wolanski, Gaseous detonation processes in presence of inert particles. Paper at 13th Coll. (International) on Dust Explosion, 1987Google Scholar
  15. 15.
    M.P. Sherman, S.R. Tieszen, W.B. Benedick, FLAME facility. The effects of obstacles and transverse venting on flame acceleration and transition to detonation of hydrogen-air mixtures at large scale. NUREG/CR-5275 & SAND 85–12610, 1989Google Scholar
  16. 16.
    C.M. Guirao, R. Knystautas, J.H. Lee, A summary of hydrogen-air detonations for reactor safety, NUREG/CR-4961, 1989Google Scholar
  17. 17.
    G.I. Taylor, The instability of liquid surface when accelerated in direction perpendicular their plane. Proc. Roy. Soc. A201(1065), 192–196 (1950)Google Scholar
  18. 18.
    N. Brehm, F. Mayinger, Ein Beitrag zum Phanomen des Uberganges Deflagration-Detonation, vol. 653 (VOI-Verlag, Dusseldorf, 1989), 36 p.Google Scholar
  19. 19.
    F. Mayinger, R. Beauvais, G. Strube, Consideration of DDT models. Paper at hydrogen seminar, GRS, Cologne, 1990Google Scholar
  20. 20.
    A. Lannoy, Analyse des explosions air-hydrocarbures en milieu libre: Etudes deterministe et probabiliste du scenario d’accident. Prevision des effets de surpression. Bulletin Direct. Etudes et Recherches EDF, A4, 390 (1984)Google Scholar
  21. 21.
    R. Knystautas, J.H. Lee, O. Peraldi, C.K. Chan, Transmission of flame from a rough to a smooth wall tube. Progress Astronautics and Aeronautics, in Dynamics of Explosions, ed. by J.R. Bowen, N. Manson, A.K. Oppenheim, R.I. Soloukhin, vol. 106 (AIAA, New York, 1986), pp. 37–52Google Scholar
  22. 22.
    S.B. Dorofeev, Hydrogen flame in tubes: critical run-up distances. in Proceedings of International Conference Hydrogen Safety, San Sebastian, 2007Google Scholar
  23. 23.
    Зeльдoвич Я.Б. Флуктуaции пepиoдa индукции paзвeтвлeнныx цeпныx peaкций//Дoклaды AH CCCP. 1981. T. 257, № 5. C. 1173–1175 (Ya.B. Zeldovich, Fluctuation of induction period of branched chain reactions. Doklady AN SSSR 257(5), 1173–1175 (1981))Google Scholar
  24. 24.
    D.T. Harrje, F.H. Reardon (eds.), Liquid Propellant Rocket Combustion Instability (NASA, Washington, 1972), p. 637Google Scholar
  25. 25.
    G. König, R.R. Maly, D. Bradley, A.K.C. Lau, C.G.W. Sheppard, Role of exothermic centers on knock initiation and knock engine. SAE TP, No 902136, 1990, p. 22Google Scholar
  26. 26.
    Meдвeдeв C.П., Пoлeнoв A.H., Гeльфaнд Б.E. Boзбуждeниe удapныx вoлн пpи взaимoдeйcтвии вoлны paзpeжeния c oблacтью caмoвocплaмeнeния в гaзoвoй cмecи//Дoклaды AH CCCP, 1991. T. 319, № 4, C.918-921 (S.P. Medvedev, A.N. Polenov, B.E. Gelfand, Shock waves onset upon interaction of rarefaction wave with self-ignition region in gaseous mixture. Doklady AN SSSR 319(4),918–921 (1991))Google Scholar
  27. 27.
    Ya.B. Zel’dovich, V.B. Librovich, G.M. Makhviladze, G.I. Sivashinsky, On the development of detonation in a non-uniformly preheated gas. Acta Astronaut 15, 313–321 (1970)Google Scholar
  28. 28.
    A.M. Bartenev, B.E. Gelfand, Spontaneous initiation of detonations. Progr. Energy Combust. Sci. 26(1), 29–55 (2000)CrossRefGoogle Scholar
  29. 29.
    Ya.B. Zeldovich, B.E. Gelfand, S.A. Tsyganov, S.M. Frolov, A.N. Polenov, Concentration and temperature nonuniformities (CTN) of combustible mixtures as a reason of pressure waves generation. Progr. Astronaut. Aeronaut, in Dynamics of Explosions, ed. by A.L. Kuhl, J.R. Bowen, J.-C. Leyer, A.A. Borisov, vol. 114 (AIAA, Washington, DC, 1988), pp. 99–123Google Scholar
  30. 30.
    Гeльфaнд Б.E., Фpoлoв C.M., Цыгaнoв C.A. Caмoпpoизвoльнoe вoзбуждeниe удapныx и дeтoнaциoнныx вoлн пpи pacшиpeнии peaгиpующиx cpeд//B кн. «Фундaмeнтaльныe пpoблeмы физики удapныx вoлн». 1987. T. 1, чacть 1.Чepнoгoлoвкa. OИXФ AH CCCP. C. 144 (B.E. Gelfand, S.M. Frolov, S.A. Tsyganov, Spontaneous initiation of shock and detonation waves upon expansion of reactive media. In: “Fundamentalnye problemy fiziki udarnyh voln”, Chernogolovka OIHF AN SSSR,1(Pt. 1), 144 (1987))Google Scholar
  31. 31.
    Бapтeнeв A.M. Гaзoдинaмикa cпoнтaнныx взpывныx пpoцeccoв. Диccepтaция д.ф.-м.н. ИXФ PAH, 2001, 303 C (A.M. Bartenev, Gasdynamics of spontaneous explosion processes. Dissertation d.f.-m.n.. Inst. Chem. Phys. RAS, 2001, p. 303)Google Scholar
  32. 32.
    B.E. Gel’fand, A.N. Polenov, S.M. Frolov, S.A. Tsyganov, Occurrence of detonation in a nonuniformly heated gas mixture. Combust. Explos. Shock Waves 21(4), 488–492 (1985)CrossRefGoogle Scholar
  33. 33.
    Гeльфaнд Б.E., Фpoлoв C.A., Пoлeнoв A.H., Цыгaнoв C.A. Boзникнoвeниe дeтoнaции в cиcтeмax c нeoднopoдным pacпpeдeлeниeм тeмпepaтуpы и кoнцeнтpaции//Xимичecкaя физикa. 1986. T. 5, № 9. C. 1277–1284. (B.E. Gelfand, S.M. Frolov, A.N. Polenov, S.A. Tsyganov, Detonation onset in systems with non-uniform temperature and concentration distribution. Himicheskaya Fizika5(9), 1277–1284 (1986))Google Scholar
  34. 34.
    B.E. Gel’fand, S.M. Frolov, S.A. Tsyganov, Mechanism of explosions in gas pumping units for gas mains. Combust. Explos. Shock Waves 24(3), 356–358 (1988)CrossRefGoogle Scholar
  35. 35.
    Maxвилaдзe Г.M., Poгaтыx Д.И. Haчaльныe нeoднopoднocти тeмпepaтуpы и кoнцeнтpaции – пpичинa взpывнoгo пpoтeкaния xимичecкoй peaкции в гopючeм гaзe//M.: Пpeпpинт ИПM AH CCCP. 1988. № 321. 41 c. (G.M. Makhviladze, D.I. Rogatykh, Nonuniformities in initial temperature and concentration as a cause of explosive chemical reactions in combustible gases. M.:Preprint Inst. Probl. Mech. AN SSSR, 321, 41 (1988))Google Scholar
  36. 36.
    Гeльфaнд Б.E., Maxвилaдзe Г.M., Poгaтыx Д.И., Фpoлoв C.M. Кpитepии cпoнтaннoгo вoзникнoвeния взpывныx peжимoв peaкции нa нeoднopoднocтяx pacпpeдeлeния пepиoдa зaдepжки caмoвocплaмeнeния//Пpeпpинт ИПM AH CCCP. 1989. № 424. 46 c. (B.E. Gelfand, G.M. Makhviladze, D.I. Rogatykh, S.M. Frolov, Criterium of spontaneous initiation of explosive regimes of reaction at non-uniformities of induction time delay. M.: Preprint Inst. Probl. Mech. AN SSSR, 424, 46 (1989))Google Scholar
  37. 37.
    B.E. Gelfand, A.M. Bartenev, S.P. Medvedev, A.N. Polenov, H. Grönig, M. Lenartz, Specific features of incident and reflected blast waves. Shock Waves 4(2), 137–157 (1994)CrossRefGoogle Scholar
  38. 38.
    J.H. Lee, R. Knystautas, N. Yoshikawa, Photochemical initiation of gaseous detonation. Acta Astronaut. 5(11/12), 971–982 (1978)CrossRefGoogle Scholar
  39. 39.
    R. Knystautas, J.H. Lee, I.O. Moen, H.G. Wagner, Direct initiation of spherical detonation by a hot turbulent gas jet. Proc. Combust. Inst. 17, 1235–1244 (1979)Google Scholar
  40. 40.
    V.I. Alekseev, S.B. Dorofeev, V.I. Sidorov, Investigation of blast waves transformation to detonation in two-phase unconfined clouds. Preprint IAE-5228/13. M.: Atominform, 1990, p. 35Google Scholar
  41. 41.
    S.B. Dorofeev, A.S. Kotchurko, B.B. Chaivanov, Evaluation of the hydrogen explosion hazard. in Proceedings of 18th Water Reactor Safety Meeting, 1990Google Scholar
  42. 42.
    I.O. Moen, D. Bjerketvedt, A. Jenssen, P. Thibault, Transition to detonation in large fuel cloud. Combust. Flame 61(3), 285–291 (1985)CrossRefGoogle Scholar
  43. 43.
    M. Schildknecht et al., Versuche zur freistrahlzundung von wasserstoff + luft gemischen im hinblick auf DDT. BleV-R-65, 769–1, 1984Google Scholar
  44. 44.
    M. Berman, The effects of scale and geometry on hydrogen-air detonation. SAND 85–0171, 1985Google Scholar
  45. 45.
    U. Behrens, G. Langer, M. Stock, I. Wirkner-Bott, Deflagration-detonation transition in hydrogen + air + steam mixtures. Nucl. Eng. Design 130(1), 43–50 (1991)CrossRefGoogle Scholar
  46. 46.
    T.F. Kanzleiter, Multi-compartment hydrogen deflagration experiments in Battele (Frankfurt/Main) model containment, in Proceedings of WRSIM-89, Rockvill, 1989Google Scholar
  47. 47.
    P. Worthington, Hydrogen combustion research. Paper at seminar on hydrogen safety, Sukhumi, 1989Google Scholar
  48. 48.
    J.E. Shepherd, Deflagration to detonation transition loads, in Proceedings of PVP- IS-PVT211, 2006, ASME Pressure Vessels and Piping Conference, 2006Google Scholar
  49. 49.
    J.E. Shepherd, Structural response to explosions. Paper at 1st European School on Hydrogen Safety, Olster, 2007Google Scholar
  50. 50.
    K.P. Staniukovich, Unsteady Motion of Continuous Media (Pergamon, London, 1960), p. 745Google Scholar
  51. 51.
    A.D. Craven, T.R. Greig, The development of detonation overpressure in pipelines. Chem. Eng. Symp. Ser. 25, 41–50 (1968)Google Scholar
  52. 52.
    Кoгapкo C.M. Иccлeдoвaниe дaвлeния нa тopцe тpубы пpи быcтpoм нecтaциoнapнoм гopeнии//ЖTФ. 1958. T. 38, No 9. C. 1958–1969 (S.M. Kogarko, Study of pressure at the tube end-flange upon fast non-stationary combustion. Zh. Tehnich. Fiziki38(9), 1958–1969 (1958))Google Scholar
  53. 53.
    J.E. Shepherd, Pressure loads and structurel response of BNL high temperature detonation tube. RPI Technical Report A-3991, 1992Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations