Regimes of Supersonic Combustion: Detonation Waves

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)


Detonation is the most destructive regime of combustion and, though this process is an infrequent occurrence in the real life, especially in hydrogen + air mixtures, its characteristics are analyzed because of the potential great danger of the process.


Critical energy Cell size Detonation Limits of detonation Initiation 


  1. 1.
    R. Atkinson, D.C. Bull, P.J. Shuff, Initiation of spherical detonation in hydrogen/air. Combust. Flame 39, 287–300 (1980)CrossRefGoogle Scholar
  2. 2.
    C.К. Westbrook, Hydrogen oxidation kinetics in gaseous detonation. Combust. Sci. Technol. 29, 67–81 (1982)CrossRefGoogle Scholar
  3. 3.
    C. Westbrook, Chemical kinetics of hydrocarbon oxidation in gaseous detonations. Combust. Flame 46, 191–210 (1982)CrossRefGoogle Scholar
  4. 4.
    I. Glassman, Combustion, 3rd edn. (Academic, San Diego, 1996), p. 631, CA, USGoogle Scholar
  5. 5.
    A. Teodorczyk, Limits of steady propagation of hydrogen deflagrations and detonations.2nd European Summer School on Hydrogen Safety, Belfast, 2007Google Scholar
  6. 6.
    J.C. Krok, Jet initiation of deflagration and detonation. Ph.D. thesis, Caltech Institute, Pasadena, 1997, 190 p.Google Scholar
  7. 7.
    D.C. Bull, J.E. Elsworth, P.J. Shuff, E. Metcalfe, Detonation cell structures in fuel/air mixtures. Combust. Flame 45, 7–22 (1982)CrossRefGoogle Scholar
  8. 8.
    A.A. Vasil’ev, M.E. Tochiyan, V.Yu. Ul’yanitskii, Effects of initial temperature on gas-detonation parameters. Combust. Explos. Shock Waves 15(6), 815–818 (1979)CrossRefGoogle Scholar
  9. 9.
    W.A. Straus, J.N. Scott, Experimental investigation of the detonation properties of H2 + O2 and H2 + NO2 mixtures. Combust. Flame 19, 141–143 (1972)CrossRefGoogle Scholar
  10. 10.
    J.E. Shepherd, Deflagration to detonation transition loads,in Proceedings of PVP- IS-PVT211. ASME Pressure Vessels and Piping Conference, 2006Google Scholar
  11. 11.
    J.E. Shepherd, Pressure loads and structural response of BNL high temperature detonation tube. RPI Technical Report A-3991, 1992Google Scholar
  12. 12.
    R.A. Strehlow, C.D. Engel, Transverse waves in detonations: structure and spacing in H2 + O2, C2H2 + O2, C2H4 + O2, and CH4 + O2 systems. AIAA J. 7, 492–496 (1969)CrossRefGoogle Scholar
  13. 13.
    D.W. Stamps, S.R. Tieszen, The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combust. Flame 83, 353–364 (1991)CrossRefGoogle Scholar
  14. 14.
    C.M. Guirao, R. Knystautas, J. Lee, W. Benedick, M. Berman, Hydrogen-air detonations. Proc. Combust. Institute 19, 583–590 (1982)CrossRefGoogle Scholar
  15. 15.
    S.R. Tieszen, M.P. Sherman, W.B. Benedick, J.E. Shepherd, R. Knystautas, J.H.S. Lee, Detonation cell size measurements in hydrogen-air-steam mixtures. Progr. Astron. Aeron. 106, 205–219 (1986)Google Scholar
  16. 16.
    W.B. Benedick, R. Knystautas, J.H.S. Lee, Large-scale experiments on the transmission of fuel-air detonations from two-dimensional channels. Progr. Astron. Aeron. 94, 546–555 (1984)Google Scholar
  17. 17.
    G. Ciccarelli, T. Ginsberg, J. Boccio, C. Economos, K. Sato, M. Kinoshita, Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures. Combust. Flame 99, 212–220 (1994)CrossRefGoogle Scholar
  18. 18.
    H.D. Ng, Y. Ju, J.H. Lee, Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int. J. Hydrogen Energy 32(2), 93–99 (2007)CrossRefGoogle Scholar
  19. 19.
    H.D. Ng, J.H. Lee, Comments to explosion problems to hydrogen safety. J. Loss Prevention Process Industries 21(2), 135–146 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D.W. Stamps, S.E. Slezak, S.R. Tieszen, Observations of the cellular structure of fuel-air detonations. Combust. Flame 144, 289–298 (2006)CrossRefGoogle Scholar
  21. 21.
    G. Ciccarelli, T.G. Ginsberg, J.L. Boccio, The influence of initial temperature on the detonability characteristics of hydrogen-air-steam mixtures. Combust. Science Technol. 128, 181–196 (1997)CrossRefGoogle Scholar
  22. 22.
    Z.M. Shapiro, T.R. Moffette, Hydrogen flammability data and application to PWR loss-of-coolant accident. Report WAPD-SC- 545, Bettis Plant, 1957Google Scholar
  23. 23.
    B. Lewis, G. Von Elbe, Combustion, Flames and Explosion of Gases, 3rd edn. (Academic, Orlando, 1987), p. 739Google Scholar
  24. 24.
    Reactor Risk Reference Document. NUREG −1150, 1987Google Scholar
  25. 25.
    M.P. Sherman, M. Berman, The possibility of local detonations during degraded-core accidents in the Bellefonte nuclear power plant. Nuclear Technol. 81(1), 63–67 (1988)Google Scholar
  26. 26.
    M.P. Sherman, S.R. Tieszen, W.B. Benedick, FLAME facility. The effects of obstacles and transverse venting on flame acceleration and transition to detonation of hydrogen + air mixtures at large scale. NUREG CR-5275 & SAND 85–1261, 1989Google Scholar
  27. 27.
    A.Y. Kusharin, G.L. Agafonov, O.E. Popov, B.E. Gelfand, Detonability of H2/CO/CO2/air mixtures. Combust. Sci. Technol. 135, 85–98 (1998)CrossRefGoogle Scholar
  28. 28.
    Кoгapкo C.M., Зeльдoвич Я.Б. O дeтoнaции гaзoвыx cмeceй//Дoклaды AH CCCP, 1948. T. 63, № 5. C. 533 (S.M. Kogarko, Ya.B. Zeldovich, On detonation of gaseous mixtures. Doklady AN SSSR 63(5), 533 (1948))Google Scholar
  29. 29.
    A.A. Vasil’ev, V.V. Mitrofanov, M.E. Topchiyan, Detonation waves in gases. Combust. Explos. Shock Waves 23(5), 605–623 (1987)CrossRefGoogle Scholar
  30. 30.
    Mитpoфaнoв B.B., Coлoуxин P.И. O дифpaкции мнoгoфpoнтoвoй дeтoнaциoннoй вoлны в гaзe//Дoклaды AH CCCP, 1964. T. 159, № 5. C. 1003 (V.V. Mitrofanov, R.I. Soloukhin, On diffraction of multifront detonation wave in gas. Doklady AN SSSR 159(5), 1003 (1964))Google Scholar
  31. 31.
    Зeльдoвич Я.Б., Кoгapкo C.M., Cимoнoв H.H. Экcпepимeнтaльнoe иccлeдoвaниe cфepичecкoй гaзoвoй дeтoнaции//ЖTФ, 1956. T. 26, № 8. C. 1744–1768 (Ya.B. Zeldovich, S.M. Kogarko, N.N. Simonov, Experimental investigation of spherical gaseous detonation. Zhurn. Tehnich. Fiziki 26(8), 1744–1768 (1956))Google Scholar
  32. 32.
    Бoxoн Ю.A., Шулeнин Ю.B. Mинимaльнaя энepгия иницииpoвaния cфepичecкoй гaзoвoй дeтoнaции нeкoтopыx cмeceй вoдopoдa//Дoклaды AH CCCP, 1979. T. 245, № 3. C. 623–626 (Yu.A. Bokhon, Yu.V. Shulenin, Minimum spherical gaseous detonation initiation energy for certain hydrogen mixtures. Doklady AN SSSR 245(3), 623–626 (1979))Google Scholar
  33. 33.
    V.I. Makeev, Yu.A. Gostintsev, V.V. Strogonov, Yu.A. Bokhon, Yu.N. Chernushkin et al., Combustion and detonation of hydrogen air mixtures in free spaces. Combust. Explos. Shock Waves 19(5), 548–550 (1983)CrossRefGoogle Scholar
  34. 34.
    Aдушкин B.B., Гocтинцeв Ю.A., Фopтoв B.E. Энepгeтичecкиe xapaктepиcтики взpывa и пapaмeтpы удapныx вoлн в вoздуxe пpи дeтoнaции вoдopoдcoдepжaщиx oблaкoв в cвoбoднoй aтмocфepe//Xимичecкaя физикa, 1995. T.14, № 6. C. 59–102 (V.V. Adushkin, Yu.A. Gostintsev, V.E. Fortov, Energetic characteristics of explosion and shock wave parameters in air at detonation of hydrogenous clouds in free space. Himicheskaya Fizika14(6), 59–102 (1995))Google Scholar
  35. 35.
    W.B. Benedick, C.M. Guirao, R. Knystautas, J.H. Lee, Critical energy for the direct initiation of detonation in gaseous fuel-air mixtures. Progr. Asronaut. Aeronaut. 106, 181–202 (1986)Google Scholar
  36. 36.
    Detonation Database. db.html
  37. 37.
    J.H.S. Lee, A.J. Higgins, Comments on criteria for direct initiation of detonation. Phil. Trans. R. Soc. Lond. A. 357, 3503–3521 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    T. Niioka, K. Takita, On the detonation behavior of mixed fuels. Shock Waves 6, 61–66 (1996)CrossRefGoogle Scholar
  39. 39.
    D.C. Bull, Concentration limits to the initiation of unconfined detonation in fuel + air mixtures. Trans. I. Chem. Eng. 57, 219–227 (1979)Google Scholar
  40. 40.
    M. Berman, The effects of scale and geometry on hydrogen-air detonation. Report SAND 85–0171, 1985Google Scholar
  41. 41.
    W. Jost, H.G. Wagner, Influence of various parameters on initiation, stability and limits of detonation. AFOSR 78–3587, 1979, AFOSR 79-0117A, 1981, AFOSR 73–2541, 1978Google Scholar
  42. 42.
    C.K. Westbrook, P.A. Urtiew, Chemical kinetic prediction of critical parameters in gaseous detonations. Proc. Combust. Inst. 19, 615–623 (1982)Google Scholar
  43. 43.
    L. Maurice, T. Edwards, J. Griffits, Liquid hydrocarbon fuels for hypersonic Propulsion. Progr. Astron. and Aeron, in Scramjet propulsion, ed. by E.T. Curran, S.N.B. Murphy, vol. 189 (AIAA, NewYork, 1999), pp. 757–822Google Scholar
  44. 44.
    J.M. Austin, J.E. Shepherd, Carbon monoxide detonations, in CD-ROM Proceeding of 17th ICDERS, Paper № 79, Heidelberg, 1999Google Scholar
  45. 45.
    A. Teodorczyk, A. Dobkowski, Suppression effectiveness studies of inert gases, halons and halon-alternative agents on detonation, in CD-ROM Proceeding of 17th ICDERS, Paper № 225, Heidelberg, 1999Google Scholar
  46. 46.
    L.S. Yanovski, V.A. Sosunov, Y.M. Shikman, The application of endothermic fuels for high speed propulsion systems, in Proceedings of the 13-th Symposium (Int.) on Air-Breathing Engines, vol. 1 (AIAA, New York, 1997), pp. 59–69, AIAAGoogle Scholar
  47. 47.
    L.S. Yanovski, Endothermic fuels for hypersonic aviation, in Proceedings of AGARD Conference on Fuels and Combustion Technology for Advanced Aircraft Engines . AGARD CP-536, 1993, pp. 44.1–44.8Google Scholar
  48. 48.
    A.A. Borisov, S.A. Loban’, Detonation limits of hydrocarbon-air mixtures in tubes. Combust. Explos. Shock Waves 13(5), 618–621 (1977)CrossRefGoogle Scholar
  49. 49.
    W.B. Benedick, J.B. Kennedy, B. Morosin, Detonation limits of unconfined hydrocarbon-air mixtures. Combust. Flame 15(1), 83–84 (1970)CrossRefGoogle Scholar
  50. 50.
    W. Bartknecht, Explosions (Springer, Berlin/Heidelberg/NewYork, 1981), p. 251CrossRefGoogle Scholar
  51. 51.
    G.A. Karim, I. Wierzba, S. Boon, Some considerations of the lean flammability limits of mixtures including hydrogen. Int. J. Hydrogen Energy 10(1/2), 117–122 (1985)CrossRefGoogle Scholar
  52. 52.
    H. Jang, R. Knystautas, J.H. Lee, in Research of Flammabililty Limits of Hybrid Mixtures, vol. 105, ed. by J.R. Bowen, J.-C. Leyer, R.I. Soloukhin. Progress in Aeronautics and Astronautics (AIAA, New York, 1986), p. 2, pp. 155–168Google Scholar
  53. 53.
    Бopиcoв A.A., Гeльфaнд Б.E., Лoбaнь C.A., Maилкoв A.E., Xoмик C.B. Иccлeдoвaниe пpeдeлoв дeтoнaции тoпливoвoздушныx cмeceй в глaдкиx и шepoxoвaтыx тpубax//Xимичecкaя физикa, 1982. T.2, № 6. C. 848–853 (A.A. Borisov, B.E. Gelfand, S.A. Loban’, A.E. Mailkov, S.V. Khomik, Investigation of fuel-air mixtures detonation limits in smooth and rough tubes. Himicheskaya Fizika 2(6), 848–853 (1982))Google Scholar
  54. 54.
    A.A. Vasilev, Yu.A. Nikolaev, V.Yu. Ul’yanitskii, Critical energy of initiation of a multifront detonation. Combust. Explos. Shock Waves 15(6), 768–775 (1979)CrossRefGoogle Scholar
  55. 55.
    J.M. Austin, J.E. Shepherd, Detonations in hydrocarbon fuel blends. Combust. Flame 132, 73–90 (2003)CrossRefGoogle Scholar
  56. 56.
    A. Teodorczyk, Mitigation of hydrogen-air detonations. First European Summer School on Hydrogen Safety, Belfast, 2006Google Scholar
  57. 57.
    J.H. Lee, Explosion hazards of hydrogen-air mixtures. First European Summer School on Hydrogen Safety, Belfast, 2006Google Scholar
  58. 58.
    B.E. Gelfand, Detonation limits of air mixtures with two-component gaseous fuel. Combust. Explos. Shock Waves 38(5), 581–584 (2002)CrossRefGoogle Scholar
  59. 59.
    N. Chaumeix, S. Pichon, F. Lafosse, C.E. Paillard, Role of chemical kinetics on the detonation properties of hydrogen/natural gas/air mixtures. Int. J. Hydrogen Energy 32(13), 2216–2226 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations