Skip to main content

Regimes of Supersonic Combustion: Detonation Waves

  • Chapter
  • First Online:
Thermo-Gas Dynamics of Hydrogen Combustion and Explosion

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 2127 Accesses

Abstract

Detonation is the most destructive regime of combustion and, though this process is an infrequent occurrence in the real life, especially in hydrogen + air mixtures, its characteristics are analyzed because of the potential great danger of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Atkinson, D.C. Bull, P.J. Shuff, Initiation of spherical detonation in hydrogen/air. Combust. Flame 39, 287–300 (1980)

    Article  Google Scholar 

  2. C.К. Westbrook, Hydrogen oxidation kinetics in gaseous detonation. Combust. Sci. Technol. 29, 67–81 (1982)

    Article  Google Scholar 

  3. C. Westbrook, Chemical kinetics of hydrocarbon oxidation in gaseous detonations. Combust. Flame 46, 191–210 (1982)

    Article  Google Scholar 

  4. I. Glassman, Combustion, 3rd edn. (Academic, San Diego, 1996), p. 631, CA, US

    Google Scholar 

  5. A. Teodorczyk, Limits of steady propagation of hydrogen deflagrations and detonations.2nd European Summer School on Hydrogen Safety, Belfast, 2007

    Google Scholar 

  6. J.C. Krok, Jet initiation of deflagration and detonation. Ph.D. thesis, Caltech Institute, Pasadena, 1997, 190 p.

    Google Scholar 

  7. D.C. Bull, J.E. Elsworth, P.J. Shuff, E. Metcalfe, Detonation cell structures in fuel/air mixtures. Combust. Flame 45, 7–22 (1982)

    Article  Google Scholar 

  8. A.A. Vasil’ev, M.E. Tochiyan, V.Yu. Ul’yanitskii, Effects of initial temperature on gas-detonation parameters. Combust. Explos. Shock Waves 15(6), 815–818 (1979)

    Article  Google Scholar 

  9. W.A. Straus, J.N. Scott, Experimental investigation of the detonation properties of H2 + O2 and H2 + NO2 mixtures. Combust. Flame 19, 141–143 (1972)

    Article  Google Scholar 

  10. J.E. Shepherd, Deflagration to detonation transition loads,in Proceedings of PVP- IS-PVT211. ASME Pressure Vessels and Piping Conference, 2006

    Google Scholar 

  11. J.E. Shepherd, Pressure loads and structural response of BNL high temperature detonation tube. RPI Technical Report A-3991, 1992

    Google Scholar 

  12. R.A. Strehlow, C.D. Engel, Transverse waves in detonations: structure and spacing in H2 + O2, C2H2 + O2, C2H4 + O2, and CH4 + O2 systems. AIAA J. 7, 492–496 (1969)

    Article  Google Scholar 

  13. D.W. Stamps, S.R. Tieszen, The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combust. Flame 83, 353–364 (1991)

    Article  Google Scholar 

  14. C.M. Guirao, R. Knystautas, J. Lee, W. Benedick, M. Berman, Hydrogen-air detonations. Proc. Combust. Institute 19, 583–590 (1982)

    Article  Google Scholar 

  15. S.R. Tieszen, M.P. Sherman, W.B. Benedick, J.E. Shepherd, R. Knystautas, J.H.S. Lee, Detonation cell size measurements in hydrogen-air-steam mixtures. Progr. Astron. Aeron. 106, 205–219 (1986)

    Google Scholar 

  16. W.B. Benedick, R. Knystautas, J.H.S. Lee, Large-scale experiments on the transmission of fuel-air detonations from two-dimensional channels. Progr. Astron. Aeron. 94, 546–555 (1984)

    Google Scholar 

  17. G. Ciccarelli, T. Ginsberg, J. Boccio, C. Economos, K. Sato, M. Kinoshita, Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures. Combust. Flame 99, 212–220 (1994)

    Article  Google Scholar 

  18. H.D. Ng, Y. Ju, J.H. Lee, Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int. J. Hydrogen Energy 32(2), 93–99 (2007)

    Article  Google Scholar 

  19. H.D. Ng, J.H. Lee, Comments to explosion problems to hydrogen safety. J. Loss Prevention Process Industries 21(2), 135–146 (2008)

    Article  Google Scholar 

  20. D.W. Stamps, S.E. Slezak, S.R. Tieszen, Observations of the cellular structure of fuel-air detonations. Combust. Flame 144, 289–298 (2006)

    Article  Google Scholar 

  21. G. Ciccarelli, T.G. Ginsberg, J.L. Boccio, The influence of initial temperature on the detonability characteristics of hydrogen-air-steam mixtures. Combust. Science Technol. 128, 181–196 (1997)

    Article  Google Scholar 

  22. Z.M. Shapiro, T.R. Moffette, Hydrogen flammability data and application to PWR loss-of-coolant accident. Report WAPD-SC- 545, Bettis Plant, 1957

    Google Scholar 

  23. B. Lewis, G. Von Elbe, Combustion, Flames and Explosion of Gases, 3rd edn. (Academic, Orlando, 1987), p. 739

    Google Scholar 

  24. Reactor Risk Reference Document. NUREG −1150, 1987

    Google Scholar 

  25. M.P. Sherman, M. Berman, The possibility of local detonations during degraded-core accidents in the Bellefonte nuclear power plant. Nuclear Technol. 81(1), 63–67 (1988)

    Article  Google Scholar 

  26. M.P. Sherman, S.R. Tieszen, W.B. Benedick, FLAME facility. The effects of obstacles and transverse venting on flame acceleration and transition to detonation of hydrogen + air mixtures at large scale. NUREG CR-5275 & SAND 85–1261, 1989

    Google Scholar 

  27. A.Y. Kusharin, G.L. Agafonov, O.E. Popov, B.E. Gelfand, Detonability of H2/CO/CO2/air mixtures. Combust. Sci. Technol. 135, 85–98 (1998)

    Article  Google Scholar 

  28. Кoгapкo C.M., Зeльдoвич Я.Б. O дeтoнaции гaзoвыx cмeceй//Дoклaды AH CCCP, 1948. T. 63, № 5. C. 533 (S.M. Kogarko, Ya.B. Zeldovich, On detonation of gaseous mixtures. Doklady AN SSSR 63(5), 533 (1948))

    Google Scholar 

  29. A.A. Vasil’ev, V.V. Mitrofanov, M.E. Topchiyan, Detonation waves in gases. Combust. Explos. Shock Waves 23(5), 605–623 (1987)

    Article  Google Scholar 

  30. Mитpoфaнoв B.B., Coлoуxин P.И. O дифpaкции мнoгoфpoнтoвoй дeтoнaциoннoй вoлны в гaзe//Дoклaды AH CCCP, 1964. T. 159, № 5. C. 1003 (V.V. Mitrofanov, R.I. Soloukhin, On diffraction of multifront detonation wave in gas. Doklady AN SSSR 159(5), 1003 (1964))

    Google Scholar 

  31. Зeльдoвич Я.Б., Кoгapкo C.M., Cимoнoв H.H. Экcпepимeнтaльнoe иccлeдoвaниe cфepичecкoй гaзoвoй дeтoнaции//ЖTФ, 1956. T. 26, № 8. C. 1744–1768 (Ya.B. Zeldovich, S.M. Kogarko, N.N. Simonov, Experimental investigation of spherical gaseous detonation. Zhurn. Tehnich. Fiziki 26(8), 1744–1768 (1956))

    Google Scholar 

  32. Бoxoн Ю.A., Шулeнин Ю.B. Mинимaльнaя энepгия иницииpoвaния cфepичecкoй гaзoвoй дeтoнaции нeкoтopыx cмeceй вoдopoдa//Дoклaды AH CCCP, 1979. T. 245, № 3. C. 623–626 (Yu.A. Bokhon, Yu.V. Shulenin, Minimum spherical gaseous detonation initiation energy for certain hydrogen mixtures. Doklady AN SSSR 245(3), 623–626 (1979))

    Google Scholar 

  33. V.I. Makeev, Yu.A. Gostintsev, V.V. Strogonov, Yu.A. Bokhon, Yu.N. Chernushkin et al., Combustion and detonation of hydrogen air mixtures in free spaces. Combust. Explos. Shock Waves 19(5), 548–550 (1983)

    Article  Google Scholar 

  34. Aдушкин B.B., Гocтинцeв Ю.A., Фopтoв B.E. Энepгeтичecкиe xapaктepиcтики взpывa и пapaмeтpы удapныx вoлн в вoздуxe пpи дeтoнaции вoдopoдcoдepжaщиx oблaкoв в cвoбoднoй aтмocфepe//Xимичecкaя физикa, 1995. T.14, № 6. C. 59–102 (V.V. Adushkin, Yu.A. Gostintsev, V.E. Fortov, Energetic characteristics of explosion and shock wave parameters in air at detonation of hydrogenous clouds in free space. Himicheskaya Fizika14(6), 59–102 (1995))

    Google Scholar 

  35. W.B. Benedick, C.M. Guirao, R. Knystautas, J.H. Lee, Critical energy for the direct initiation of detonation in gaseous fuel-air mixtures. Progr. Asronaut. Aeronaut. 106, 181–202 (1986)

    Google Scholar 

  36. Detonation Database. http://www.galcit.caltech.edu/detn_db/html/ db.html

  37. J.H.S. Lee, A.J. Higgins, Comments on criteria for direct initiation of detonation. Phil. Trans. R. Soc. Lond. A. 357, 3503–3521 (1999)

    Article  MathSciNet  Google Scholar 

  38. T. Niioka, K. Takita, On the detonation behavior of mixed fuels. Shock Waves 6, 61–66 (1996)

    Article  Google Scholar 

  39. D.C. Bull, Concentration limits to the initiation of unconfined detonation in fuel + air mixtures. Trans. I. Chem. Eng. 57, 219–227 (1979)

    Google Scholar 

  40. M. Berman, The effects of scale and geometry on hydrogen-air detonation. Report SAND 85–0171, 1985

    Google Scholar 

  41. W. Jost, H.G. Wagner, Influence of various parameters on initiation, stability and limits of detonation. AFOSR 78–3587, 1979, AFOSR 79-0117A, 1981, AFOSR 73–2541, 1978

    Google Scholar 

  42. C.K. Westbrook, P.A. Urtiew, Chemical kinetic prediction of critical parameters in gaseous detonations. Proc. Combust. Inst. 19, 615–623 (1982)

    Article  Google Scholar 

  43. L. Maurice, T. Edwards, J. Griffits, Liquid hydrocarbon fuels for hypersonic Propulsion. Progr. Astron. and Aeron, in Scramjet propulsion, ed. by E.T. Curran, S.N.B. Murphy, vol. 189 (AIAA, NewYork, 1999), pp. 757–822

    Google Scholar 

  44. J.M. Austin, J.E. Shepherd, Carbon monoxide detonations, in CD-ROM Proceeding of 17th ICDERS, Paper № 79, Heidelberg, 1999

    Google Scholar 

  45. A. Teodorczyk, A. Dobkowski, Suppression effectiveness studies of inert gases, halons and halon-alternative agents on detonation, in CD-ROM Proceeding of 17th ICDERS, Paper № 225, Heidelberg, 1999

    Google Scholar 

  46. L.S. Yanovski, V.A. Sosunov, Y.M. Shikman, The application of endothermic fuels for high speed propulsion systems, in Proceedings of the 13-th Symposium(Int.) on Air-Breathing Engines, vol. 1 (AIAA, New York, 1997), pp. 59–69, AIAA

    Google Scholar 

  47. L.S. Yanovski, Endothermic fuels for hypersonic aviation, in Proceedings of AGARD Conference on Fuels and Combustion Technology for Advanced Aircraft Engines . AGARD CP-536, 1993, pp. 44.1–44.8

    Google Scholar 

  48. A.A. Borisov, S.A. Loban’, Detonation limits of hydrocarbon-air mixtures in tubes. Combust. Explos. Shock Waves 13(5), 618–621 (1977)

    Article  Google Scholar 

  49. W.B. Benedick, J.B. Kennedy, B. Morosin, Detonation limits of unconfined hydrocarbon-air mixtures. Combust. Flame 15(1), 83–84 (1970)

    Article  Google Scholar 

  50. W. Bartknecht, Explosions (Springer, Berlin/Heidelberg/NewYork, 1981), p. 251

    Book  Google Scholar 

  51. G.A. Karim, I. Wierzba, S. Boon, Some considerations of the lean flammability limits of mixtures including hydrogen. Int. J. Hydrogen Energy 10(1/2), 117–122 (1985)

    Article  Google Scholar 

  52. H. Jang, R. Knystautas, J.H. Lee, in Research of Flammabililty Limits of Hybrid Mixtures, vol. 105, ed. by J.R. Bowen, J.-C. Leyer, R.I. Soloukhin. Progress in Aeronautics and Astronautics (AIAA, New York, 1986), p. 2, pp. 155–168

    Google Scholar 

  53. Бopиcoв A.A., Гeльфaнд Б.E., Лoбaнь C.A., Maилкoв A.E., Xoмик C.B. Иccлeдoвaниe пpeдeлoв дeтoнaции тoпливoвoздушныx cмeceй в глaдкиx и шepoxoвaтыx тpубax//Xимичecкaя физикa, 1982. T.2, № 6. C. 848–853 (A.A. Borisov, B.E. Gelfand, S.A. Loban’, A.E. Mailkov, S.V. Khomik, Investigation of fuel-air mixtures detonation limits in smooth and rough tubes. Himicheskaya Fizika 2(6), 848–853 (1982))

    Google Scholar 

  54. A.A. Vasilev, Yu.A. Nikolaev, V.Yu. Ul’yanitskii, Critical energy of initiation of a multifront detonation. Combust. Explos. Shock Waves 15(6), 768–775 (1979)

    Article  Google Scholar 

  55. J.M. Austin, J.E. Shepherd, Detonations in hydrocarbon fuel blends. Combust. Flame 132, 73–90 (2003)

    Article  Google Scholar 

  56. A. Teodorczyk, Mitigation of hydrogen-air detonations. First European Summer School on Hydrogen Safety, Belfast, 2006

    Google Scholar 

  57. J.H. Lee, Explosion hazards of hydrogen-air mixtures. First European Summer School on Hydrogen Safety, Belfast, 2006

    Google Scholar 

  58. B.E. Gelfand, Detonation limits of air mixtures with two-component gaseous fuel. Combust. Explos. Shock Waves 38(5), 581–584 (2002)

    Article  Google Scholar 

  59. N. Chaumeix, S. Pichon, F. Lafosse, C.E. Paillard, Role of chemical kinetics on the detonation properties of hydrogen/natural gas/air mixtures. Int. J. Hydrogen Energy 32(13), 2216–2226 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gelfand, B.E., Silnikov, M.V., Medvedev, S.P., Khomik, S.V. (2012). Regimes of Supersonic Combustion: Detonation Waves. In: Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25352-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25352-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25351-5

  • Online ISBN: 978-3-642-25352-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics