Advertisement

Self-Ignition of Hydrogenous Mixtures

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Chapter
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

Due to hydrogen’s exceptional reactivity with air/oxygen oxidizers resulting in no toxic combustion products, hydrogen has been considered as a very efficient working medium for propulsion devices for a long time.

Keywords

Focusing Ignition delay time Mild ignition Self-ignition Strong ignition 

References

  1. 1.
    S.O. Bode Shrestha, G.A. Karim, Hydrogen as an additive to methane for spark ignition engine applications. Int. J. Hydrogen Energy 24(5), 521–586 (1994)Google Scholar
  2. 2.
    R.D. Hawtorn, A.C. Nixon, Shock tube ignition delay studies of endothermic fuels. AIAA J 4(3), 513–520 (1966)CrossRefGoogle Scholar
  3. 3.
    L. Maurice, T. Edwards, J. Griffits, Liquid hydrocarbon fuels for hypersonic propulsion, in Scramjet Propulsion, ed. by E.T. Curran, S.N.B. Murphy. Progress in Aeronautics and Astronautics (AIAA, New York, 1999), pp. 757–822Google Scholar
  4. 4.
    L.S. Yanovski, V.A. Sosunov, Y.M. Shikman, The application of endothermic fuels for high speed propulsion systems, in Proceedings of the 13th symposium (international) on air-breathing engines, vol. 1 (AIAA, New York, 1997), pp. 59–69Google Scholar
  5. 5.
    L.S. Yanovski, Endothermic fuels for hypersonic aviation, in Proceedings of AGARD conference on fuels and combustion technology for advanced aircraft engines, 1993. AGARD CP-536, pp. 44.1–44.8Google Scholar
  6. 6.
    D.B. Wheeler, Tripropellant engine study, Rocketdyne ASR (1977), pp. 77–240Google Scholar
  7. 7.
    W. Breitung, A. Eder, C.K. Chan, S.B. Dorofeev, B.E. Gelfand, et al., SOAR on flame acceleration and DDT in nuclear safety, OECD/NEA/CSNI/R 2000 vol. 7 (2000)Google Scholar
  8. 8.
    C.K. Westbrook, Hydrogen oxidation kinetics in gaseous detonations. Comb. Sci. Technol 29(1–2), 67–81 (1982)CrossRefGoogle Scholar
  9. 9.
    N.S. Astapov, A. Yu Nikolaev, V. Yu Ul’yanitskii, Detonation parameters of hydrogen-oxygen and hydrogen-air mixtures at high initial density. Combust. Explos. Shock Waves 20(1), 89–96 (1984)CrossRefGoogle Scholar
  10. 10.
    D.T. Harrje, F.H. Reardon (eds.), Liquid Propellant Rocket Combustion Instability (NASA, Washington, 1972), p. 637Google Scholar
  11. 11.
    L.N. Khitrin, The Physics of Combustion and Explosion (Israel Program for Scientific Translations, Washington, 1962), p. 448Google Scholar
  12. 12.
    B.M. Зaмaнcкий, A.A. Бopиcoв, Mexaнизм и пpoмoтиpoвaниe caмoвocплaмeнeния пepcпeктивныx тoплив, Cб. Итoги нaуки и тexники. Кинeтикa. Кaтaлиз. BИHИTИ AH CCCP. 1989. T. 19. 155 c. (Zamanskii V.M., Borisov A.A., Mechanism and promotion of self-ignition for prospective fuels, Sb. Itogi Nauki i Tehniki. Kinetika. Kataliz. VINITI AN SSSR, vol. 19 (1989), 155 p.)Google Scholar
  13. 13.
    F.E. Belles, J.H. Ehlers, Shock wave ignition of H2 + O2 + diluent mixtures near detonation limits. ARS J 32(2), 215–220 (1962)Google Scholar
  14. 14.
    Boeвoдcкий B.B., Coлoуxин P.И. O мexaнизмe и пpeдeлax цeпнoгo caмoвocплaмeнeния вoдopoдa c киcлopoдoм зa удapными вoлнaми. Дoкл. AH CCCP. 1964. T. 154, № 6. C. 1425–1428 (V.V. Voevodsky, R.I. Soloukhin, On mechanism and limits of a chain self ignition of a hydrogen – oxygen mixture behind the shock waves. Doklady AN SSSR154(6), 1425–1428 (1964))Google Scholar
  15. 15.
    H. Miyama, F. Takeyma, Kinetics of H2 + O2 reaction in shock waves. J. Chem. Phys 41(8), 2287–2290 (1964)CrossRefGoogle Scholar
  16. 16.
    G.L. Shott, J.L. Kinsey, Induction times in the hydrogen-oxygen reaction. J. Chem. Phys. 29(5), 1177–1182 (1958)CrossRefGoogle Scholar
  17. 17.
    F.W. Ruegg, W.W. Dorsey, A missile technique for study of detonation waves. J. Res. Nat. Bur. Standards 66(1), 51–58 (1962)Google Scholar
  18. 18.
    E. Oran, J. Boris, Weak and strong ignition. Sensitivity of the hydrogen-oxygen system. Combust. Flame 48(1), 149–161 (1982)CrossRefGoogle Scholar
  19. 19.
    W. Tsang, R.J. Hampson, Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds Chem. Phys. Ref. Data 15(3), 1087–1279 (1986)CrossRefGoogle Scholar
  20. 20.
    W.G. Gardiner Jr. (ed.), Combustion Chemistry (Springer, New York, 1984), p. 509Google Scholar
  21. 21.
    K. Hasegawa, T. Asaba, Study of the ignition reaction in a mixture of oxygen with hydrogen at relatively high pressures and low temperatures in a shock tube. Combust. Explos. Shock Waves 8(3), 317–324 (1972)CrossRefGoogle Scholar
  22. 22.
    S. Fujimoto, Chemical reaction in shock waves. The ignition delay of H2 + O2 mixtures in a shock tube. Bull. Chem. Soc. Jap. 36(10), 1233–1236 (1963)CrossRefGoogle Scholar
  23. 23.
    Зaйцeв C.Г., Coлoуxин P.И. O вocплaмeнeнии aдиaбaтичecки нaгpeтoй гaзoвoй cмecи//Дoкл. AH CCCP. 1958. T. 112, № 6. C. 1039–1041 (S.G. Zaytsev , R.I. Soloukhin, On ignition of an adiabatically heated gas mixture. Doklady AN SSSR 112(6), 1039–1041 (1958))Google Scholar
  24. 24.
    S.G. Zaytsev, R.I. Soloukhin, Study of combustion of an adiabatically heated gas mixture. Proc. Combust. Inst. 8, 344–347 (1962)Google Scholar
  25. 25.
    V.V. Voevodsky, R.I. Soloukhin, On the mechanisms and explosion limits of hydrogen-oxygen chain self ignition in shock waves. Proc. Combust. Inst. 10, 279–283 (1965)Google Scholar
  26. 26.
    R.K. Cheng, A.K. Oppenheim, Autoignition of methane–hydrogen mixtures. Combust. Flame 58(2), 125–139 (1984)CrossRefGoogle Scholar
  27. 27.
    D.L. Baulch, D.D. Drysdale, D.G. Horne, A.C. Lloyd, Evaluated Kinetic Date for High Temperature Reactions (Leeds University, 1972), 433 p. Leeds, UKGoogle Scholar
  28. 28.
    D.R. White, G.E. Moore, Structure of gaseous detonation. Induction zone studies in H2 + O2 and CO + O2 mixtures. Proc. Combust. Inst. 10, 785–795 (1965)Google Scholar
  29. 29.
    M. Steinberg, W.E. Kaskan, The ignition of combustible mixtures by shock waves. Proc. Combust. Inst. 5, 664–672 (1955)Google Scholar
  30. 30.
    R.A. Strehlow, A. Cohen, Initiation of detonation. Phys. Fluids 5(1), 97–101 (1962)CrossRefGoogle Scholar
  31. 31.
    R.A. Strehlow, R. Maurer, T. Rajan, Transverse waves in detonation spacing in the H2 + O2 systems. AIAA J 7(2), 323–328 (1969)CrossRefGoogle Scholar
  32. 32.
    R.B. Gilbert, R.A. Strehlow, Theory of detonation initiation behind reflected shock waves. AIAA J 4(10), 1777–1783 (1966)CrossRefGoogle Scholar
  33. 33.
    R.W. Patch, Prediction of composition limits for detonation of H2-O2-diluent mixtures. ARS J 31(1), 46–51 (1961)Google Scholar
  34. 34.
    B.P. Mullins, Ignition delay times measurements on gas turbine fuels, NATO AGARD AG5/P2. (1952)Google Scholar
  35. 35.
    B.P. Mullins, Studies of spontaneous ignition of fuels injected into a hot gas stream. Fuel. 32 Parts III, IV, 327–362 (1953)Google Scholar
  36. 36.
    V.I. Golovichev, V.I. Dimitrov, R.I. Soloukhin, Numerical analysis of kinetic models of hydrogen ignition. Combust. Explos. Shock Waves 9(1), 79–83 (1973)CrossRefGoogle Scholar
  37. 37.
    J.B. Skinner, J.M. Ringrose, Ignition delays of H2 + O2 + Ar mixtures at relatively low temperatures. J. Chem. Phys. 42(6), 2190–2194 (1965)CrossRefGoogle Scholar
  38. 38.
    T. Asaba, W.C. Gardiner, R.F. Stubbeman, Shock tube study of hydrogen-oxygen reaction. Proc. Combust. Inst. 10, 292–302 (1965)Google Scholar
  39. 39.
    G. Mullaney, P. Ku, W. Boch, Determination of induction times in one-dimensional detonations. AIAA J 3, 873–879 (1965)CrossRefGoogle Scholar
  40. 40.
    Гocтинцeв Ю.A., Гaмepa Ю.B., Пeтуxoв B.A., Фopтoв B.E. Aдaптaция cиcтeмы кинeтичecкиx уpaвнeний для pacчeтa гaзoдинaмики peaгиpующeй вoдopoдo-киcлopoднoй cмecи//Xимичecкaя физикa. 1988. T. 18, № 5. C. 67–72 (Yu.A. Gostintsev, Yu.V. Gamera, V.A. Petukhov, V.E. Fortov, Adaptation of kinetic equations set for the calculation of reactive hydrogen – oxygen mixture gasdynamics. Himicheskaya Fizika.18(5), 67–72 (1988))Google Scholar
  41. 41.
    J.E. Dove, T.D. Tribbeck, Computational study of the kinetics of the hydrogen-oxygen reaction behind steady-state shock waves. Astron. Acta. 15(5/6), 387–397 (1970)Google Scholar
  42. 42.
    F.E. Belles, Detonability and chemical kinetics. Prediction of limits of detonability of hydrogen. Proc. Combust. Inst. 7, 745–751 (1959)Google Scholar
  43. 43.
    U. Maas, J. Warnatz, Ignition processes in H2 + O2 mixtures. Combust. Flame 74(1), 53–69 (1988)CrossRefGoogle Scholar
  44. 44.
    B.L. Wang, H. Olivier, H. Grönig, Ignition of shock heated H2 + Air + Steam mixtures. Combust. Flame 133(1/2), 93–106 (2003)CrossRefGoogle Scholar
  45. 45.
    C. Viguier, L.F. Figueria Da Silva, D. Desbordes, D. Deshaies, Onset of detonation waves. Comparison between experimental and numerical results for H2 + air mixtures. Proc. Combust. Inst. 26, 3023–3031 (1996)Google Scholar
  46. 46.
    Гeльфaнд Б.E., Пoпoв O.E., Meдвeдeв C.П., Xoмик C.B., Aгaфoнoв Г.Л., Кушapин A.Ю. Oтличитeльныe пpизнaки caмoвocплaмeнeния вoдopoдo-вoздушныx cмeceй пpи выcoкoм дaвлeнии//Дoкл. PAH. 1993. T. 330, № 4. C. 457–459 (B.E. Gelfand, O.E. Popov, S.P. Medvedev, S.V. Khomik, G.L. Agafonov, A.Yu. Kusharin, Specific features of hydrogen – air mixtures self ignition at high pressure. Doklady RAN. 330(4) (1993), pp. 457–459)Google Scholar
  47. 47.
    Гeльфaнд Б.E.. Meдвeдeв C.П., Xoмик C.B., Пoпoв O.E., Кушapин A.Ю., Aгaфoнoв Г.Л. Caмoвocплaмeнeниe cмeceй вoдopoд + киcлopoд пpи выcoкoм нaчaльнoм дaвлeнии//Дoкл. PAH. 1996. T. 349, № 4. C. 482–485 (B.E. Gelfand, S.P. Medvedev, S.V. Khomik, O.E. Popov, A.Yu. Kusharin, G.L. Agafonov, Self ignition of hydrogen + oxygen mixtures at high initial pressure. Doklady RAN 349(4), 482–485 (1996))Google Scholar
  48. 48.
    T.M. Cain, Autoignition of hydrogen at high pressure. Combust. Flame 111(1/2), 124–132 (1997)CrossRefGoogle Scholar
  49. 49.
    B.E. Gel’fand, S.P. Medvedev, A.N. Polenov, S.V. Khomik, A.M. Bartenev, Basic self-ignition regimes and conditions for their realization in combustible gas mixtures. Combust. Explos. Shock Waves 33(2), 127–133 (1997)CrossRefGoogle Scholar
  50. 50.
    B.E. Gelfand, A.M. Bartenev, S.V. Khomik, S.P. Medvedev, A.N. Polenov, Selfignition of hybrid (H2 + atomized liquid hydrocarbon fuel + gaseous oxydizer) at engine relevant conditions. Proc. Combust. Inst. 26, 2573–2579 (1996)Google Scholar
  51. 51.
    G. Ciccarelli, J.L. Boccio, T. Ginsberg, C. Finfrock, L. Gerlach, K. Sato, A.M. Kinoshita, High-temperature H2 + Air + Steam detonation experiments in the BNL small scale development apparatus. BNL-Nureg-52414. Nureg/CR-6213, 1994, 69 p.Google Scholar
  52. 52.
    A.N. Derevyago, O.G. Peniazkov, K.A. Ragotner, K.L. Sevruk, Auto-ignition of hydrogen – air mixture at elevated pressures, in Proceedings of 26th International Symposium on Shock Waves, ed. by K. Hannemann, F. Seiler, vol. 1 (Springer, Berlin-Heidelberg, 2009), pp.733–738Google Scholar
  53. 53.
    V.N. Strokin, V.M. Khailov, Effects of nitric oxide on ignition delay for hydrogen in air. Combust. Explos. Shock Waves 10(2), 198–201 (1974)CrossRefGoogle Scholar
  54. 54.
    M.W. Slack, A.R. Grillo, (a) Kinetics of hydrogen-oxygen and methane-oxygen ignition sensitized by NO and NO2, in Proceedings of 11-th Symposium (International) on Shock Tubes, ed. by A. Lifshitz, A. Burcat (Jerusalem University, 1978), pp. 408–415; M.W. Slack, A.R. Grillo (b) Investigation of H2 + Air ignition sensitized by NO and NO2, NASA CR-2896 (1977), 56 p.Google Scholar
  55. 55.
    W.R. Laster, P.E. Sojka, Autoignition of H2 + air mixture. The effect of NOx addition. J. Propulsion. 5(4), 385–390 (1989)CrossRefGoogle Scholar
  56. 56.
    J. Lu, A.K. Gupta, A.A. Pouring, E.L. Keating, A preliminary study of chemically enhanced autoignition in an Intal combustion engine. Paper presented at 14th ICDERS, University of Coimbra, vol. 1 (1993), pp. 10.7.1–10Google Scholar
  57. 57.
    L. Chengku, G.A. Karim, A simulation of the combustion of hydrogen in HCCI engine using a 3d model with detailed kinetics. Int. J. Hydrogen Energy 33(14), 3863–3875 (2008)CrossRefGoogle Scholar
  58. 58.
    Дивaкoв O.Г., Зибopoв B.C., Epeмин A.B., Фopтoв B.E. Hepaвнoвecнoe caмoвocплaмeнeниe киcлopoднo-вoдopoдныx cмeceй вo фpoнтe cлaбoй удapнoй вoлны//Дoкл. PAH. 2000. T. 373, № 3. C. 487–490 (O.G. Divakov, V.S. Ziborov, A.B. Eremin, V.E. Fortov, Nonequilibrium self ignition of oxygen – hydrogen mixtures at the front of the weak shock wave. Doklady RAN 373(3), 487–490 (2000))Google Scholar
  59. 59.
    O.G. Divakov, A.V. Eremin, V.S. Ziborov, Gas diluter influence on H2/O2 mixture ignition in weak shock wave. CD-ROM Proceedings of 22–ISSW, paper № 3974, Southampton University, 1999Google Scholar
  60. 60.
    R. Blumenthal, K. Fieweger, K.H. Komp et al., in Selfignition of H 2+ air mixtures at high pressure and low temperature, ed. by B. Sturtevant, J.E. Shepherd, H. Hornung. Shock Waves, Proceedings of 20th ISSW, vol. 2 (World Scientific, 1996), pp. 935–940Google Scholar
  61. 61.
    G.A. Pang, D.E. Davidson, R.K. Hanson, Shock tube ignition delay times for H2 + O2 + Air mixtures at low temperature and elevated pressure. Paper 07F-12. Fall meeting of WSS of Combustion Institute, Livermore, 16–17 Oct 2007Google Scholar
  62. 62.
    F.L. Dryer, M. Chaos, Syngas combustion kinetics and applications. Comb. Sci. Tech 180, 1051–1094 (2008)Google Scholar
  63. 63.
    J. Ströhle, T. Myhrvoid, An evaluation of detailed reaction mechanisms for hydrogen combustion under gas turbine conditions. Int. J. Hydrogen Energy 32(1), 125–135 (2007)CrossRefGoogle Scholar
  64. 64.
    Бaeв B.К., Бузукoв A.A., Tимoшeнкo Б.П., Шумcкий B.B., Яpocлaвцeв M.И., Яцкиx A.B. Caмoвocплaмeнeниe вoдopoдa пpи импульcнoм выcoкoнaпopнoм впpыcкe eгo в вoздуx//B cб. Cтpуктуpa гaзoфaзныx плaмeн (пoд peд. B.К. Бaeвa) ИTПM COAH CCCP: Hoвocибиpcк. 1984. C. 179–188 (V. K. Baev, A.A. Buzukov, B.P. Timoshenko, V.V. Shumskii, M.I. Yuroslavtsev, A.V. Yutskih, Hydrogen self ignition at pulse high-pressure injection to air. V sb. Structura gazofaznyh plamen (red. Baev V.K.) (ITPM SOAN SSSR, Novosibirsk, 1984), pp. 179–188)Google Scholar
  65. 65.
    J.D. Naber, D.L. Siebers, Hydrogen combustion under diesel engine conditions. Int. J. Hydrogen Energy 23(5), 363–371 (1998)CrossRefGoogle Scholar
  66. 66.
    F. Takeyama, S. Taki, T. Fujiwara, A. Hayashi, A. Sakurai, Numerical analysis of ignition of H 2 spray into air, ed. by J.R. Bowen, J-C. Leyer, R.I. Soloukhin, Progress in Astronautics. and Aeronautics. Dynamics of reactive systems. P.2: Modeling and heterogeneous combustion, vol. 105 (AIAA, Washington, DC, 1986), pp. 25–37Google Scholar
  67. 67.
    A. Sakurai, Autoignition of H2 by shock compressed oxidizer in shock waves, in Proceedings of 15th Symposium (International) on Shock Waves, 1986, pp. 77–86Google Scholar
  68. 68.
    M.W. Slack, Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times. Combust. Flame 28(3), 241–249 (1977)CrossRefGoogle Scholar
  69. 69.
    B.E. Gelfand, O.E. Popov, A. Yu. Kusharin, G.L. Agafonov, W. Breitung, High-temperature self ignition and detonation of hydrogen + air mixtures with NOx additives, in Proceedings of 15th ICDERS, Colorado University, Denver, 1995, pp. 473–475Google Scholar
  70. 70.
    R. Sierens, E. Rosseel, Variable composition hydrogen/ natural gas mixtures for increased engine efficiency and decreased emissions. Trans. ASME: J. Eng. Gas Turbines Power 122(1), 135–140 (2000)CrossRefGoogle Scholar
  71. 71.
    Гeльфaнд Б.E., Пoпoв A.E, Чaйвaнoв Б.Б. Boдopoд: пapaмeтpы гopeния и взpывa. – M.: Физмaтлит, 2008. – 288 c. (B.E. Gelfand, O.E. Popov, B.B. Chaivanov, Hydrogen: parameters of combustion and explosion, Moscow, Physmatlit, 2008, 288 p.)Google Scholar
  72. 72.
    S.K. Alavandi, A.K. Agrawal, Experimental study of combustion of syngas/methane fuel mixture in porous burner. Int. J. Hydrogen Energy 33(4), 1407–1415 (2008)CrossRefGoogle Scholar
  73. 73.
    N. Saravanan, G. Nagarajan, An experimental investigation of hydrogen-enriched air induction in diesel engine system. Int. J. Hydrogen Energy 33(6), 1769–1775 (2008)CrossRefGoogle Scholar
  74. 74.
    Бopиcoв A.A., Гeльфaнд Б.E., Зaмaнcкий B.M., Лиcянcкий B.B., Cкaчкoв Г.И., Tpoшин К.Я. Bocплaмeнeниe гopючиx гaзoвыx cмeceй в уcлoвияx фoкуcиpoвки oтpaжeнныx удapныx вoлн//Xимичecкaя физикa. 1988. T. 7, № 10. C. 1387–1391. (A.A. Borisov, B.E. Gelfand, V.M. Zamanskii, V.V. Lisianskii, G.I. Skachkov, K. Ya. Troshin, Ignition of gaseous combustible mixtures at conditions of focused reflected shock waves.Himicheskaya Fizika 7(10), 1387–1391 (1988))Google Scholar
  75. 75.
    A.A. Borisov, B.E. Gelfand, G.I. Skatchkov et al., Ignition of gaseous combustible mixtures in focused shock waves, in Current topics in shock waves, ed. by Y. Kim. Proceedings of 17th ISSW (AIP, New York, 1990), pp. 696–701Google Scholar
  76. 76.
    B.E. Gelfand, S.M. Frolov, S.P. Medvedev, S.A. Tsyganov, Three cases of shock waves focusing in combustible media, in Shock Waves, ed. by K. Takayama. Proceedings of 18th ISSW, vol. 2 (Springer, Berlin/New York, 1992), pp. 837–842Google Scholar
  77. 77.
    C.K. Chan, D. Lau, P.A. Thibault, J.D. Penrose, Ignition and detonation initiation by shock focusing, in Current topics in shock waves, ed. by Y. Kim. Proceedings of 17th ISSW (AIP, New York, 1990), pp. 161–166Google Scholar
  78. 78.
    S.P. Medvedev, V.V. Zukov, S.V. Khomik, A.N. Polenov, B.E. Gelfand, H. Grönig, H. Olivier, Application of double – wavelength photodiode detector for study of H2 + air combustion induced by shock focusing, in Proceedings of 22nd International Symposium on Shock Waves, vol. 1, ed. by R. Hiller, et al., Southampton University Press, 2000, pp. 315–320Google Scholar
  79. 79.
    Бopиcoв A.A., Гeльфaнд Б.E., Цыгaнoв C.A., Tимoфeeв E.И. Гaзoдинaмичecкиe эффeкты пpи caмoвocплaмeнeнии pacпылeннoгo жидкoгo тoпливa//Дoкл. AH CCCP. 1985. T. 281, № 2. C. 361–363 (A.A. Borisov, B.E. Gelfand, S.A. Tsyganov, E.I. Timofeev, Gasdynamic phenomena at self ignition of atomized liquid fuel. Doklady AN SSSR 281(2), 361–363 (1985))Google Scholar
  80. 80.
    K. Fieweger, R. Blumenthal, G. Adomeit, Self-ignition of SI-engine model fuels. A shock tube investigation at high pressure. Combust. Flame 109(4), 599–619 (1997)CrossRefGoogle Scholar
  81. 81.
    S.P. Medvedev, B.E. Gelfand, S.V. Khomik, H. Olivier, H. Grönig, Experimental evidence for detonation of lean H2 + air mixtures induced by shock focussing, in Proceedings of 17-ICDERS, CD-ROM, Heidelberg, Germany, 1999. Paper № 024Google Scholar
  82. 82.
    A.M. Bartenev, B.E. Gelfand, H. Grönig, S.P. Medvedev, A.N. Polenov, S.V. Khomik, Combustion of gaseous mixtures in space with nonuniform pressure – temperature. Fluid Dynamics 34(2), 258–266 (1999)Google Scholar
  83. 83.
    B.E. Gelfand, S.V. Khomik, S.P. Medvedev, H. Grönig, H. Olivier, Visualization of the explosive regimes at the shock waves focusing, in Proceedings of 22nd International Symposium on Shock Waves, vol. 1, ed. by R. Hiller et al., Southampton University Press, 2000, pp. 309–314Google Scholar
  84. 84.
    U. Pfahl, K. Fieweger, G. Adomeit, B.E. Gelfand, Shock tube investigation of atomization, evaporation and ignition of n-decane and α-methylnaphtalene droplets, in Shock Waves, ed. by B. Sturtevant, J.E. Shepherd, H. Hornung, vol. 2 (World Scientific, Singapore/River Edge/London/Hong Kong, 1996), pp. 1027–1032Google Scholar
  85. 85.
    S.V. Khomik, S.P. Medvedev, A.M. Bartenev, B.E. Gelfand, H. Grönig, H. Olivier, Time – resolved studies of mild and strong ignition of hydrogen – air mixtures in Proceedings of the International Workshop on Shock wave focusing phenomena in combustible mixtures: Ignition and transition to detonation of reactive media under geometrical constrains, ed. by H. Grönig, B. Gelfand. (Shaker Verlag, Aachen, 2000), 15–31Google Scholar
  86. 86.
    Гeльфaнд Б.E., Xoмик C.B., Meдвeдeв C.П., Пoлeнoв A.H., Бapтeнeв A.M., Гpёниг X. Caмoвocплaмeнeниe гoмoгeнныx гaзoвыx cмeceй вблизи нeплocкиx пoвepxнocтeй//Дoкл. PAH. 1998. T. 359, № 4. C. 490–494 (B.E. Gelfand, S.V. Khomik, S.P. Medvedev, A.N Polenov, A.M. Bartenev, H. Grönig, Self ignition of homogeneous gaseous mixtures near non-flat surfaces. Doklady RAN 359(4), 490–494 (1998))Google Scholar
  87. 87.
    B.E. Gelfand, S.V. Khomik, A.M. Bartenev, H. Grönig, H. Olivier, Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10(3), 197–204 (2000)CrossRefGoogle Scholar
  88. 88.
    A.M. Bartenev, S.V. Khomik, B.E. Gelfand, H. Grönig, H. Olivier, Effect of reflection type on detonation initiation at shock waves focusing. Shock Waves 10(3), 205–215 (2000)zbMATHCrossRefGoogle Scholar
  89. 89.
    B.E. Gelfand, S.V. Khomik, S.P. Medvedev, H. Grönig, H. Olivier, Visualization of selfignition regimes under the shock waves focusing, in Proceedings of 24th International Congress High-Speed Photography and Photonic, vol. 183, ed. by K. Takayama et al., Proceedings SPIE, 2001, paper 4183–83, pp. 688–695Google Scholar
  90. 90.
    B.E. Gelfand, S.V. Khomik, S.P. Medvedev, A.N. Polenov, A.M. Bartenev, W. Breitung, Self ignition of combustible mixture behind shock waves reflected at non-flat surfaces at high initial pressure, in Proceedings of 20th ISSW, 1995, Cal. Tech, Pasadena, p. 251Google Scholar
  91. 91.
    B.E. Gelfand, S.P. Medvedev, S.V. Khomik, A.M. Bartenev, A.N. Polenov, A. Veser, W. Breitung, Investigation of H2 + air fast flame propagation and DDT in tube with multidimensional endplates. Archivum combustionis 18(1–4), 105–123 (1998)Google Scholar
  92. 92.
    Гeльфaнд Б.E., Бapтeнeв A.M. Meдвeдeв C.П., Пoлeнoв A.H., Xoмик C.B. Гaзoдинaмичecкиe явлeния пpи вocплaмeнeнии и гopeнии гoмoгeнныx cмeceй вблизи нeплocкиx пoвepxнocтeй//Poccийcкий xимичecкий жуpнaл. 2001. № 3. C. 5–15 (B.E. Gelfand, A.M. Bartenev, S.P. Medvedev, A.N. Polenov, S.V. Khomik, Gasdynamics phenomena at ignition and combustion of homogeneous mixtures near non-flat surfaces. Rossiiskii Khimicheskii Zhurnal 3, 5–15 (2001))Google Scholar
  93. 93.
    J.A. Miller, C.T. Bowman, Mechanism and modelling of nitrogen chemistry in combustion. Progr. Energy Combust. Sci. 15, 287–338 (1989)CrossRefGoogle Scholar
  94. 94.
    F. Westley, Table of recommended rate constants for chemical reactions occurring in combustion. U.S. NBS Report No. 67, 1980, 110 p.Google Scholar
  95. 95.
    B.T. Гoнткoвcкaя, A.Г. Mepжaнoв, Чиcлeннoe иccлeдoвaниe кинeтики и мexaнизмa oкиcлeния вoдopoдa, OИXФ AH CCCP, Пpeпpинт 1982, 22 c. (V.T. Gontkovskaya, A.G. Merzhanov, Numerical study of kinetics and mechanism of hydrogen oxidation, OIChPh AN SSSR, Preprint (1982), 22 p.)Google Scholar
  96. 96.
    R.I. Soloukhin, Exothermic reaction zone in one-dimensional shock waves in gases. Combust. Explos. Shock Waves 2(3), 6–10 (1966)CrossRefGoogle Scholar
  97. 97.
    Coлoуxин P.И. O дeтoнaции в гaзe, нaгpeтoм удapнoй вoлнoй//ПMTФ. 1964. № 4. C 42–48 (R.I. Soloukhin , On the detonation in gas heated by shock wave. Zh. Prikl. Mehan. Tehn. Fiziki 4, 42–48 (1964)).Google Scholar
  98. 98.
    J.Z. Li, A. Kazakov, M. Chaos, F.L. Dryer, J.J. Scire, A comprehensive kinetic mechanism for CO, CH2O and CH3OH combustion. Int. J. Chem. Kinet 39(1), 109–136 (2007)CrossRefGoogle Scholar
  99. 99.
    A.D. Snyder, J. Robertson, D.I. Zanders, G.B. Skinner, Shock tube studies of fuel-air ignition characteristics. AFAPL TR-65-93, 1965Google Scholar
  100. 100.
    R.R. Craig, A shock tube study of the ignition delay near the second explosion limit. AFAFAPL TR-66-74, 1966Google Scholar
  101. 101.
    G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg et al., GRI-Mech 3.0 (http://www.me.berkley.edu/gri_mech). 2002.
  102. 102.
    J. Warnatz, U. Maas, R.W. Dibble, Combustion (Springer, Berlin, 2003)Google Scholar
  103. 103.
    M. O’Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C.K. Westbrook, A comprechensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet 36, 603–622 (2004)CrossRefGoogle Scholar
  104. 104.
    G. Del Alamo, F.A. Williams, A.L. Sancez, Hydrogen–oxygen induction times above crossover temperature. Comb. Sci. Technol 176, 1599–1626 (2004)CrossRefGoogle Scholar
  105. 105.
    K.J. Hughes, T. Turany, A. Clague, M.J. Pilling, Leeds methane oxidationmechanism. http://www.chem.leeds.ac.uk/combustion/combustion.html. 2001
  106. 106.
    K.A. Bhashkaran, M.C. Gupta, T.H. Just, Shock tube study of the effect of NDMG on ignition characteristics of H2 + air mixtures. Combust. Flame 21(1), 45–48 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations