Skip to main content

Self-Ignition of Hydrogenous Mixtures

  • Chapter
  • First Online:
Thermo-Gas Dynamics of Hydrogen Combustion and Explosion

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

Due to hydrogen’s exceptional reactivity with air/oxygen oxidizers resulting in no toxic combustion products, hydrogen has been considered as a very efficient working medium for propulsion devices for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.O. Bode Shrestha, G.A. Karim, Hydrogen as an additive to methane for spark ignition engine applications. Int. J. Hydrogen Energy 24(5), 521–586 (1994)

    Google Scholar 

  2. R.D. Hawtorn, A.C. Nixon, Shock tube ignition delay studies of endothermic fuels. AIAA J 4(3), 513–520 (1966)

    Google Scholar 

  3. L. Maurice, T. Edwards, J. Griffits, Liquid hydrocarbon fuels for hypersonic propulsion, in Scramjet Propulsion, ed. by E.T. Curran, S.N.B. Murphy. Progress in Aeronautics and Astronautics (AIAA, New York, 1999), pp. 757–822

    Google Scholar 

  4. L.S. Yanovski, V.A. Sosunov, Y.M. Shikman, The application of endothermic fuels for high speed propulsion systems, in Proceedings of the 13th symposium (international) on air-breathing engines, vol. 1 (AIAA, New York, 1997), pp. 59–69

    Google Scholar 

  5. L.S. Yanovski, Endothermic fuels for hypersonic aviation, in Proceedings of AGARD conference on fuels and combustion technology for advanced aircraft engines, 1993. AGARD CP-536, pp. 44.1–44.8

    Google Scholar 

  6. D.B. Wheeler, Tripropellant engine study, Rocketdyne ASR (1977), pp. 77–240

    Google Scholar 

  7. W. Breitung, A. Eder, C.K. Chan, S.B. Dorofeev, B.E. Gelfand, et al., SOAR on flame acceleration and DDT in nuclear safety, OECD/NEA/CSNI/R 2000 vol. 7 (2000)

    Google Scholar 

  8. C.K. Westbrook, Hydrogen oxidation kinetics in gaseous detonations. Comb. Sci. Technol 29(1–2), 67–81 (1982)

    Google Scholar 

  9. N.S. Astapov, A. Yu Nikolaev, V. Yu Ul’yanitskii, Detonation parameters of hydrogen-oxygen and hydrogen-air mixtures at high initial density. Combust. Explos. Shock Waves 20(1), 89–96 (1984)

    Google Scholar 

  10. D.T. Harrje, F.H. Reardon (eds.), Liquid Propellant Rocket Combustion Instability (NASA, Washington, 1972), p. 637

    Google Scholar 

  11. L.N. Khitrin, The Physics of Combustion and Explosion (Israel Program for Scientific Translations, Washington, 1962), p. 448

    Google Scholar 

  12. B.M. Зaмaнcкий, A.A. Бopиcoв, Mexaнизм и пpoмoтиpoвaниe caмoвocплaмeнeния пepcпeктивныx тoплив, Cб. Итoги нaуки и тexники. Кинeтикa. Кaтaлиз. BИHИTИ AH CCCP. 1989. T. 19. 155 c. (Zamanskii V.M., Borisov A.A., Mechanism and promotion of self-ignition for prospective fuels, Sb. Itogi Nauki i Tehniki. Kinetika. Kataliz. VINITI AN SSSR, vol. 19 (1989), 155 p.)

    Google Scholar 

  13. F.E. Belles, J.H. Ehlers, Shock wave ignition of H2 + O2 + diluent mixtures near detonation limits. ARS J 32(2), 215–220 (1962)

    Google Scholar 

  14. Boeвoдcкий B.B., Coлoуxин P.И. O мexaнизмe и пpeдeлax цeпнoгo caмoвocплaмeнeния вoдopoдa c киcлopoдoм зa удapными вoлнaми. Дoкл. AH CCCP. 1964. T. 154, № 6. C. 1425–1428 (V.V. Voevodsky, R.I. Soloukhin, On mechanism and limits of a chain self ignition of a hydrogen – oxygen mixture behind the shock waves. Doklady AN SSSR154(6), 1425–1428 (1964))

    Google Scholar 

  15. H. Miyama, F. Takeyma, Kinetics of H2 + O2 reaction in shock waves. J. Chem. Phys 41(8), 2287–2290 (1964)

    Google Scholar 

  16. G.L. Shott, J.L. Kinsey, Induction times in the hydrogen-oxygen reaction. J. Chem. Phys. 29(5), 1177–1182 (1958)

    Google Scholar 

  17. F.W. Ruegg, W.W. Dorsey, A missile technique for study of detonation waves. J. Res. Nat. Bur. Standards 66(1), 51–58 (1962)

    Google Scholar 

  18. E. Oran, J. Boris, Weak and strong ignition. Sensitivity of the hydrogen-oxygen system. Combust. Flame 48(1), 149–161 (1982)

    Google Scholar 

  19. W. Tsang, R.J. Hampson, Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds Chem. Phys. Ref. Data 15(3), 1087–1279 (1986)

    Google Scholar 

  20. W.G. Gardiner Jr. (ed.), Combustion Chemistry (Springer, New York, 1984), p. 509

    Google Scholar 

  21. K. Hasegawa, T. Asaba, Study of the ignition reaction in a mixture of oxygen with hydrogen at relatively high pressures and low temperatures in a shock tube. Combust. Explos. Shock Waves 8(3), 317–324 (1972)

    Google Scholar 

  22. S. Fujimoto, Chemical reaction in shock waves. The ignition delay of H2 + O2 mixtures in a shock tube. Bull. Chem. Soc. Jap. 36(10), 1233–1236 (1963)

    Google Scholar 

  23. Зaйцeв C.Г., Coлoуxин P.И. O вocплaмeнeнии aдиaбaтичecки нaгpeтoй гaзoвoй cмecи//Дoкл. AH CCCP. 1958. T. 112, № 6. C. 1039–1041 (S.G. Zaytsev , R.I. Soloukhin, On ignition of an adiabatically heated gas mixture. Doklady AN SSSR 112(6), 1039–1041 (1958))

    Google Scholar 

  24. S.G. Zaytsev, R.I. Soloukhin, Study of combustion of an adiabatically heated gas mixture. Proc. Combust. Inst. 8, 344–347 (1962)

    Google Scholar 

  25. V.V. Voevodsky, R.I. Soloukhin, On the mechanisms and explosion limits of hydrogen-oxygen chain self ignition in shock waves. Proc. Combust. Inst. 10, 279–283 (1965)

    Google Scholar 

  26. R.K. Cheng, A.K. Oppenheim, Autoignition of methane–hydrogen mixtures. Combust. Flame 58(2), 125–139 (1984)

    Google Scholar 

  27. D.L. Baulch, D.D. Drysdale, D.G. Horne, A.C. Lloyd, Evaluated Kinetic Date for High Temperature Reactions (Leeds University, 1972), 433 p. Leeds, UK

    Google Scholar 

  28. D.R. White, G.E. Moore, Structure of gaseous detonation. Induction zone studies in H2 + O2 and CO + O2 mixtures. Proc. Combust. Inst. 10, 785–795 (1965)

    Google Scholar 

  29. M. Steinberg, W.E. Kaskan, The ignition of combustible mixtures by shock waves. Proc. Combust. Inst. 5, 664–672 (1955)

    Google Scholar 

  30. R.A. Strehlow, A. Cohen, Initiation of detonation. Phys. Fluids 5(1), 97–101 (1962)

    Google Scholar 

  31. R.A. Strehlow, R. Maurer, T. Rajan, Transverse waves in detonation spacing in the H2 + O2 systems. AIAA J 7(2), 323–328 (1969)

    Google Scholar 

  32. R.B. Gilbert, R.A. Strehlow, Theory of detonation initiation behind reflected shock waves. AIAA J 4(10), 1777–1783 (1966)

    Google Scholar 

  33. R.W. Patch, Prediction of composition limits for detonation of H2-O2-diluent mixtures. ARS J 31(1), 46–51 (1961)

    Google Scholar 

  34. B.P. Mullins, Ignition delay times measurements on gas turbine fuels, NATO AGARD AG5/P2. (1952)

    Google Scholar 

  35. B.P. Mullins, Studies of spontaneous ignition of fuels injected into a hot gas stream. Fuel. 32 Parts III, IV, 327–362 (1953)

    Google Scholar 

  36. V.I. Golovichev, V.I. Dimitrov, R.I. Soloukhin, Numerical analysis of kinetic models of hydrogen ignition. Combust. Explos. Shock Waves 9(1), 79–83 (1973)

    Google Scholar 

  37. J.B. Skinner, J.M. Ringrose, Ignition delays of H2 + O2 + Ar mixtures at relatively low temperatures. J. Chem. Phys. 42(6), 2190–2194 (1965)

    Google Scholar 

  38. T. Asaba, W.C. Gardiner, R.F. Stubbeman, Shock tube study of hydrogen-oxygen reaction. Proc. Combust. Inst. 10, 292–302 (1965)

    Google Scholar 

  39. G. Mullaney, P. Ku, W. Boch, Determination of induction times in one-dimensional detonations. AIAA J 3, 873–879 (1965)

    Google Scholar 

  40. Гocтинцeв Ю.A., Гaмepa Ю.B., Пeтуxoв B.A., Фopтoв B.E. Aдaптaция cиcтeмы кинeтичecкиx уpaвнeний для pacчeтa гaзoдинaмики peaгиpующeй вoдopoдo-киcлopoднoй cмecи//Xимичecкaя физикa. 1988. T. 18, № 5. C. 67–72 (Yu.A. Gostintsev, Yu.V. Gamera, V.A. Petukhov, V.E. Fortov, Adaptation of kinetic equations set for the calculation of reactive hydrogen – oxygen mixture gasdynamics. Himicheskaya Fizika.18(5), 67–72 (1988))

    Google Scholar 

  41. J.E. Dove, T.D. Tribbeck, Computational study of the kinetics of the hydrogen-oxygen reaction behind steady-state shock waves. Astron. Acta. 15(5/6), 387–397 (1970)

    Google Scholar 

  42. F.E. Belles, Detonability and chemical kinetics. Prediction of limits of detonability of hydrogen. Proc. Combust. Inst. 7, 745–751 (1959)

    Google Scholar 

  43. U. Maas, J. Warnatz, Ignition processes in H2 + O2 mixtures. Combust. Flame 74(1), 53–69 (1988)

    Google Scholar 

  44. B.L. Wang, H. Olivier, H. Grönig, Ignition of shock heated H2 + Air + Steam mixtures. Combust. Flame 133(1/2), 93–106 (2003)

    Google Scholar 

  45. C. Viguier, L.F. Figueria Da Silva, D. Desbordes, D. Deshaies, Onset of detonation waves. Comparison between experimental and numerical results for H2 + air mixtures. Proc. Combust. Inst. 26, 3023–3031 (1996)

    Google Scholar 

  46. Гeльфaнд Б.E., Пoпoв O.E., Meдвeдeв C.П., Xoмик C.B., Aгaфoнoв Г.Л., Кушapин A.Ю. Oтличитeльныe пpизнaки caмoвocплaмeнeния вoдopoдo-вoздушныx cмeceй пpи выcoкoм дaвлeнии//Дoкл. PAH. 1993. T. 330, № 4. C. 457–459 (B.E. Gelfand, O.E. Popov, S.P. Medvedev, S.V. Khomik, G.L. Agafonov, A.Yu. Kusharin, Specific features of hydrogen – air mixtures self ignition at high pressure. Doklady RAN. 330(4) (1993), pp. 457–459)

    Google Scholar 

  47. Гeльфaнд Б.E.. Meдвeдeв C.П., Xoмик C.B., Пoпoв O.E., Кушapин A.Ю., Aгaфoнoв Г.Л. Caмoвocплaмeнeниe cмeceй вoдopoд + киcлopoд пpи выcoкoм нaчaльнoм дaвлeнии//Дoкл. PAH. 1996. T. 349, № 4. C. 482–485 (B.E. Gelfand, S.P. Medvedev, S.V. Khomik, O.E. Popov, A.Yu. Kusharin, G.L. Agafonov, Self ignition of hydrogen + oxygen mixtures at high initial pressure. Doklady RAN 349(4), 482–485 (1996))

    Google Scholar 

  48. T.M. Cain, Autoignition of hydrogen at high pressure. Combust. Flame 111(1/2), 124–132 (1997)

    Google Scholar 

  49. B.E. Gel’fand, S.P. Medvedev, A.N. Polenov, S.V. Khomik, A.M. Bartenev, Basic self-ignition regimes and conditions for their realization in combustible gas mixtures. Combust. Explos. Shock Waves 33(2), 127–133 (1997)

    Google Scholar 

  50. B.E. Gelfand, A.M. Bartenev, S.V. Khomik, S.P. Medvedev, A.N. Polenov, Selfignition of hybrid (H2 + atomized liquid hydrocarbon fuel + gaseous oxydizer) at engine relevant conditions. Proc. Combust. Inst. 26, 2573–2579 (1996)

    Google Scholar 

  51. G. Ciccarelli, J.L. Boccio, T. Ginsberg, C. Finfrock, L. Gerlach, K. Sato, A.M. Kinoshita, High-temperature H2 + Air + Steam detonation experiments in the BNL small scale development apparatus. BNL-Nureg-52414. Nureg/CR-6213, 1994, 69 p.

    Google Scholar 

  52. A.N. Derevyago, O.G. Peniazkov, K.A. Ragotner, K.L. Sevruk, Auto-ignition of hydrogen – air mixture at elevated pressures, in Proceedings of 26th International Symposium on Shock Waves, ed. by K. Hannemann, F. Seiler, vol. 1 (Springer, Berlin-Heidelberg, 2009), pp.733–738

    Google Scholar 

  53. V.N. Strokin, V.M. Khailov, Effects of nitric oxide on ignition delay for hydrogen in air. Combust. Explos. Shock Waves 10(2), 198–201 (1974)

    Google Scholar 

  54. M.W. Slack, A.R. Grillo, (a) Kinetics of hydrogen-oxygen and methane-oxygen ignition sensitized by NO and NO2, in Proceedings of 11-th Symposium (International) on Shock Tubes, ed. by A. Lifshitz, A. Burcat (Jerusalem University, 1978), pp. 408–415; M.W. Slack, A.R. Grillo (b) Investigation of H2 + Air ignition sensitized by NO and NO2, NASA CR-2896 (1977), 56 p.

    Google Scholar 

  55. W.R. Laster, P.E. Sojka, Autoignition of H2 + air mixture. The effect of NOx addition. J. Propulsion. 5(4), 385–390 (1989)

    Google Scholar 

  56. J. Lu, A.K. Gupta, A.A. Pouring, E.L. Keating, A preliminary study of chemically enhanced autoignition in an Intal combustion engine. Paper presented at 14th ICDERS, University of Coimbra, vol. 1 (1993), pp. 10.7.1–10

    Google Scholar 

  57. L. Chengku, G.A. Karim, A simulation of the combustion of hydrogen in HCCI engine using a 3d model with detailed kinetics. Int. J. Hydrogen Energy 33(14), 3863–3875 (2008)

    Google Scholar 

  58. Дивaкoв O.Г., Зибopoв B.C., Epeмин A.B., Фopтoв B.E. Hepaвнoвecнoe caмoвocплaмeнeниe киcлopoднo-вoдopoдныx cмeceй вo фpoнтe cлaбoй удapнoй вoлны//Дoкл. PAH. 2000. T. 373, № 3. C. 487–490 (O.G. Divakov, V.S. Ziborov, A.B. Eremin, V.E. Fortov, Nonequilibrium self ignition of oxygen – hydrogen mixtures at the front of the weak shock wave. Doklady RAN 373(3), 487–490 (2000))

    Google Scholar 

  59. O.G. Divakov, A.V. Eremin, V.S. Ziborov, Gas diluter influence on H2/O2 mixture ignition in weak shock wave. CD-ROM Proceedings of 22–ISSW, paper № 3974, Southampton University, 1999

    Google Scholar 

  60. R. Blumenthal, K. Fieweger, K.H. Komp et al., in Selfignition of H2+ air mixtures at high pressure and low temperature, ed. by B. Sturtevant, J.E. Shepherd, H. Hornung. Shock Waves, Proceedings of 20th ISSW, vol. 2 (World Scientific, 1996), pp. 935–940

    Google Scholar 

  61. G.A. Pang, D.E. Davidson, R.K. Hanson, Shock tube ignition delay times for H2 + O2 + Air mixtures at low temperature and elevated pressure. Paper 07F-12. Fall meeting of WSS of Combustion Institute, Livermore, 16–17 Oct 2007

    Google Scholar 

  62. F.L. Dryer, M. Chaos, Syngas combustion kinetics and applications. Comb. Sci. Tech 180, 1051–1094 (2008)

    Google Scholar 

  63. J. Ströhle, T. Myhrvoid, An evaluation of detailed reaction mechanisms for hydrogen combustion under gas turbine conditions. Int. J. Hydrogen Energy 32(1), 125–135 (2007)

    Google Scholar 

  64. Бaeв B.К., Бузукoв A.A., Tимoшeнкo Б.П., Шумcкий B.B., Яpocлaвцeв M.И., Яцкиx A.B. Caмoвocплaмeнeниe вoдopoдa пpи импульcнoм выcoкoнaпopнoм впpыcкe eгo в вoздуx//B cб. Cтpуктуpa гaзoфaзныx плaмeн (пoд peд. B.К. Бaeвa) ИTПM COAH CCCP: Hoвocибиpcк. 1984. C. 179–188 (V. K. Baev, A.A. Buzukov, B.P. Timoshenko, V.V. Shumskii, M.I. Yuroslavtsev, A.V. Yutskih, Hydrogen self ignition at pulse high-pressure injection to air. V sb. Structura gazofaznyh plamen (red. Baev V.K.) (ITPM SOAN SSSR, Novosibirsk, 1984), pp. 179–188)

    Google Scholar 

  65. J.D. Naber, D.L. Siebers, Hydrogen combustion under diesel engine conditions. Int. J. Hydrogen Energy 23(5), 363–371 (1998)

    Google Scholar 

  66. F. Takeyama, S. Taki, T. Fujiwara, A. Hayashi, A. Sakurai, Numerical analysis of ignition of H2spray into air, ed. by J.R. Bowen, J-C. Leyer, R.I. Soloukhin, Progress in Astronautics. and Aeronautics. Dynamics of reactive systems. P.2: Modeling and heterogeneous combustion, vol. 105 (AIAA, Washington, DC, 1986), pp. 25–37

    Google Scholar 

  67. A. Sakurai, Autoignition of H2 by shock compressed oxidizer in shock waves, in Proceedings of 15th Symposium (International) on Shock Waves, 1986, pp. 77–86

    Google Scholar 

  68. M.W. Slack, Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times. Combust. Flame 28(3), 241–249 (1977)

    Google Scholar 

  69. B.E. Gelfand, O.E. Popov, A. Yu. Kusharin, G.L. Agafonov, W. Breitung, High-temperature self ignition and detonation of hydrogen + air mixtures with NOx additives, in Proceedings of 15th ICDERS, Colorado University, Denver, 1995, pp. 473–475

    Google Scholar 

  70. R. Sierens, E. Rosseel, Variable composition hydrogen/ natural gas mixtures for increased engine efficiency and decreased emissions. Trans. ASME: J. Eng. Gas Turbines Power 122(1), 135–140 (2000)

    Google Scholar 

  71. Гeльфaнд Б.E., Пoпoв A.E, Чaйвaнoв Б.Б. Boдopoд: пapaмeтpы гopeния и взpывa. – M.: Физмaтлит, 2008. – 288 c. (B.E. Gelfand, O.E. Popov, B.B. Chaivanov, Hydrogen: parameters of combustion and explosion, Moscow, Physmatlit, 2008, 288 p.)

    Google Scholar 

  72. S.K. Alavandi, A.K. Agrawal, Experimental study of combustion of syngas/methane fuel mixture in porous burner. Int. J. Hydrogen Energy 33(4), 1407–1415 (2008)

    Google Scholar 

  73. N. Saravanan, G. Nagarajan, An experimental investigation of hydrogen-enriched air induction in diesel engine system. Int. J. Hydrogen Energy 33(6), 1769–1775 (2008)

    Google Scholar 

  74. Бopиcoв A.A., Гeльфaнд Б.E., Зaмaнcкий B.M., Лиcянcкий B.B., Cкaчкoв Г.И., Tpoшин К.Я. Bocплaмeнeниe гopючиx гaзoвыx cмeceй в уcлoвияx фoкуcиpoвки oтpaжeнныx удapныx вoлн//Xимичecкaя физикa. 1988. T. 7, № 10. C. 1387–1391. (A.A. Borisov, B.E. Gelfand, V.M. Zamanskii, V.V. Lisianskii, G.I. Skachkov, K. Ya. Troshin, Ignition of gaseous combustible mixtures at conditions of focused reflected shock waves.Himicheskaya Fizika 7(10), 1387–1391 (1988))

    Google Scholar 

  75. A.A. Borisov, B.E. Gelfand, G.I. Skatchkov et al., Ignition of gaseous combustible mixtures in focused shock waves, in Current topics in shock waves, ed. by Y. Kim. Proceedings of 17th ISSW (AIP, New York, 1990), pp. 696–701

    Google Scholar 

  76. B.E. Gelfand, S.M. Frolov, S.P. Medvedev, S.A. Tsyganov, Three cases of shock waves focusing in combustible media, in Shock Waves, ed. by K. Takayama. Proceedings of 18th ISSW, vol. 2 (Springer, Berlin/New York, 1992), pp. 837–842

    Google Scholar 

  77. C.K. Chan, D. Lau, P.A. Thibault, J.D. Penrose, Ignition and detonation initiation by shock focusing, in Current topics in shock waves, ed. by Y. Kim. Proceedings of 17th ISSW (AIP, New York, 1990), pp. 161–166

    Google Scholar 

  78. S.P. Medvedev, V.V. Zukov, S.V. Khomik, A.N. Polenov, B.E. Gelfand, H. Grönig, H. Olivier, Application of double – wavelength photodiode detector for study of H2 + air combustion induced by shock focusing, in Proceedings of 22nd International Symposium on Shock Waves, vol. 1, ed. by R. Hiller, et al., Southampton University Press, 2000, pp. 315–320

    Google Scholar 

  79. Бopиcoв A.A., Гeльфaнд Б.E., Цыгaнoв C.A., Tимoфeeв E.И. Гaзoдинaмичecкиe эффeкты пpи caмoвocплaмeнeнии pacпылeннoгo жидкoгo тoпливa//Дoкл. AH CCCP. 1985. T. 281, № 2. C. 361–363 (A.A. Borisov, B.E. Gelfand, S.A. Tsyganov, E.I. Timofeev, Gasdynamic phenomena at self ignition of atomized liquid fuel. Doklady AN SSSR 281(2), 361–363 (1985))

    Google Scholar 

  80. K. Fieweger, R. Blumenthal, G. Adomeit, Self-ignition of SI-engine model fuels. A shock tube investigation at high pressure. Combust. Flame 109(4), 599–619 (1997)

    Google Scholar 

  81. S.P. Medvedev, B.E. Gelfand, S.V. Khomik, H. Olivier, H. Grönig, Experimental evidence for detonation of lean H2 + air mixtures induced by shock focussing, in Proceedings of 17-ICDERS, CD-ROM, Heidelberg, Germany, 1999. Paper № 024

    Google Scholar 

  82. A.M. Bartenev, B.E. Gelfand, H. Grönig, S.P. Medvedev, A.N. Polenov, S.V. Khomik, Combustion of gaseous mixtures in space with nonuniform pressure – temperature. Fluid Dynamics 34(2), 258–266 (1999)

    Google Scholar 

  83. B.E. Gelfand, S.V. Khomik, S.P. Medvedev, H. Grönig, H. Olivier, Visualization of the explosive regimes at the shock waves focusing, in Proceedings of 22nd International Symposium on Shock Waves, vol. 1, ed. by R. Hiller et al., Southampton University Press, 2000, pp. 309–314

    Google Scholar 

  84. U. Pfahl, K. Fieweger, G. Adomeit, B.E. Gelfand, Shock tube investigation of atomization, evaporation and ignition of n-decane and α-methylnaphtalene droplets, in Shock Waves, ed. by B. Sturtevant, J.E. Shepherd, H. Hornung, vol. 2 (World Scientific, Singapore/River Edge/London/Hong Kong, 1996), pp. 1027–1032

    Google Scholar 

  85. S.V. Khomik, S.P. Medvedev, A.M. Bartenev, B.E. Gelfand, H. Grönig, H. Olivier, Time – resolved studies of mild and strong ignition of hydrogen – air mixtures in Proceedings of the International Workshop on Shock wavefocusing phenomena in combustible mixtures: Ignition and transition to detonation of reactive media under geometrical constrains, ed. by H. Grönig, B. Gelfand. (Shaker Verlag, Aachen, 2000), 15–31

    Google Scholar 

  86. Гeльфaнд Б.E., Xoмик C.B., Meдвeдeв C.П., Пoлeнoв A.H., Бapтeнeв A.M., Гpёниг X. Caмoвocплaмeнeниe гoмoгeнныx гaзoвыx cмeceй вблизи нeплocкиx пoвepxнocтeй//Дoкл. PAH. 1998. T. 359, № 4. C. 490–494 (B.E. Gelfand, S.V. Khomik, S.P. Medvedev, A.N Polenov, A.M. Bartenev, H. Grönig, Self ignition of homogeneous gaseous mixtures near non-flat surfaces. Doklady RAN 359(4), 490–494 (1998))

    Google Scholar 

  87. B.E. Gelfand, S.V. Khomik, A.M. Bartenev, H. Grönig, H. Olivier, Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10(3), 197–204 (2000)

    MATH  Google Scholar 

  88. A.M. Bartenev, S.V. Khomik, B.E. Gelfand, H. Grönig, H. Olivier, Effect of reflection type on detonation initiation at shock waves focusing. Shock Waves 10(3), 205–215 (2000)

    MATH  Google Scholar 

  89. B.E. Gelfand, S.V. Khomik, S.P. Medvedev, H. Grönig, H. Olivier, Visualization of selfignition regimes under the shock waves focusing, in Proceedings of 24th International Congress High-Speed Photography and Photonic, vol. 183, ed. by K. Takayama et al., Proceedings SPIE, 2001, paper 4183–83, pp. 688–695

    Google Scholar 

  90. B.E. Gelfand, S.V. Khomik, S.P. Medvedev, A.N. Polenov, A.M. Bartenev, W. Breitung, Self ignition of combustible mixture behind shock waves reflected at non-flat surfaces at high initial pressure, in Proceedings of 20th ISSW, 1995, Cal. Tech, Pasadena, p. 251

    Google Scholar 

  91. B.E. Gelfand, S.P. Medvedev, S.V. Khomik, A.M. Bartenev, A.N. Polenov, A. Veser, W. Breitung, Investigation of H2 + air fast flame propagation and DDT in tube with multidimensional endplates. Archivum combustionis 18(1–4), 105–123 (1998)

    Google Scholar 

  92. Гeльфaнд Б.E., Бapтeнeв A.M. Meдвeдeв C.П., Пoлeнoв A.H., Xoмик C.B. Гaзoдинaмичecкиe явлeния пpи вocплaмeнeнии и гopeнии гoмoгeнныx cмeceй вблизи нeплocкиx пoвepxнocтeй//Poccийcкий xимичecкий жуpнaл. 2001. № 3. C. 5–15 (B.E. Gelfand, A.M. Bartenev, S.P. Medvedev, A.N. Polenov, S.V. Khomik, Gasdynamics phenomena at ignition and combustion of homogeneous mixtures near non-flat surfaces. Rossiiskii Khimicheskii Zhurnal 3, 5–15 (2001))

    Google Scholar 

  93. J.A. Miller, C.T. Bowman, Mechanism and modelling of nitrogen chemistry in combustion. Progr. Energy Combust. Sci. 15, 287–338 (1989)

    Google Scholar 

  94. F. Westley, Table of recommended rate constants for chemical reactions occurring in combustion. U.S. NBS Report No. 67, 1980, 110 p.

    Google Scholar 

  95. B.T. Гoнткoвcкaя, A.Г. Mepжaнoв, Чиcлeннoe иccлeдoвaниe кинeтики и мexaнизмa oкиcлeния вoдopoдa, OИXФ AH CCCP, Пpeпpинт 1982, 22 c. (V.T. Gontkovskaya, A.G. Merzhanov, Numerical study of kinetics and mechanism of hydrogen oxidation, OIChPh AN SSSR, Preprint (1982), 22 p.)

    Google Scholar 

  96. R.I. Soloukhin, Exothermic reaction zone in one-dimensional shock waves in gases. Combust. Explos. Shock Waves 2(3), 6–10 (1966)

    Google Scholar 

  97. Coлoуxин P.И. O дeтoнaции в гaзe, нaгpeтoм удapнoй вoлнoй//ПMTФ. 1964. № 4. C 42–48 (R.I. Soloukhin , On the detonation in gas heated by shock wave. Zh. Prikl. Mehan. Tehn. Fiziki 4, 42–48 (1964)).

    Google Scholar 

  98. J.Z. Li, A. Kazakov, M. Chaos, F.L. Dryer, J.J. Scire, A comprehensive kinetic mechanism for CO, CH2O and CH3OH combustion. Int. J. Chem. Kinet 39(1), 109–136 (2007)

    Google Scholar 

  99. A.D. Snyder, J. Robertson, D.I. Zanders, G.B. Skinner, Shock tube studies of fuel-air ignition characteristics. AFAPL TR-65-93, 1965

    Google Scholar 

  100. R.R. Craig, A shock tube study of the ignition delay near the second explosion limit. AFAFAPL TR-66-74, 1966

    Google Scholar 

  101. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg et al., GRI-Mech 3.0 (http://www.me.berkley.edu/gri_mech). 2002.

  102. J. Warnatz, U. Maas, R.W. Dibble, Combustion (Springer, Berlin, 2003)

    MATH  Google Scholar 

  103. M. O’Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C.K. Westbrook, A comprechensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet 36, 603–622 (2004)

    Google Scholar 

  104. G. Del Alamo, F.A. Williams, A.L. Sancez, Hydrogen–oxygen induction times above crossover temperature. Comb. Sci. Technol 176, 1599–1626 (2004)

    Google Scholar 

  105. K.J. Hughes, T. Turany, A. Clague, M.J. Pilling, Leeds methane oxidationmechanism. http://www.chem.leeds.ac.uk/combustion/combustion.html. 2001

  106. K.A. Bhashkaran, M.C. Gupta, T.H. Just, Shock tube study of the effect of NDMG on ignition characteristics of H2 + air mixtures. Combust. Flame 21(1), 45–48 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gelfand, B.E., Silnikov, M.V., Medvedev, S.P., Khomik, S.V. (2012). Self-Ignition of Hydrogenous Mixtures. In: Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25352-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25352-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25351-5

  • Online ISBN: 978-3-642-25352-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics