Advertisement

Fast Deflagration and Quasi-Detonation

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Chapter
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

In actual operating spaces encumbered with technical tools and equipment there is a possibility of filling them with combustible mixtures. As a rule, feedback mechanisms providing interaction between flame/initial mixture motion and compression waves generated during the combustion process are possible and exist in reactive mixtures. Below are some known examples of such mechanisms [1]:

Keywords

Deflagration-to-detonation transition Flame acceleration Fast deflagration Quasi-detonation 

References

  1. 1.
    J.H. Lee, I.O. Moen, The mechanism of transition from deflagration to detonation in vapor cloud explosions. Progr. Energy Combust. Sci. 6, 359–389 (1980)CrossRefGoogle Scholar
  2. 2.
    A. Teodorczyk, Limits of study propagation of hydrogen deflagrations and detonations. Paper at 2nd European Summer School on Hydrogen Safety, Belfast, August 2007Google Scholar
  3. 3.
    J.H. Lee, Explosion hazards of hydrogen-air mixtures. Paper at 1st European Summer School on Hydrogen Safety, Belfast, August 2006Google Scholar
  4. 4.
    G. Ciccarelli, S.B. Dorofeev, Flame acceleration and transition to detonation in ducts. Progr. Energy Combust. Sci. 34(4), 499–550 (2008)CrossRefGoogle Scholar
  5. 5.
    C.D. Lind, J.C. Whitson, Explosion hazard associated with spills of large quantities of LNG. CY-D-85-77, 1977Google Scholar
  6. 6.
    H. Pförtner, H. Schneider, Flame Acceleration and Pressure Build-Up in Free and Partially Confined H 2 +Air Clouds. Book of abstracts of 9th ICDERS, 1983, p. 60Google Scholar
  7. 7.
    T. Becker, F. Ebert, Vergleich zwischen experiment und theorie der explosion groben, freien gaswolken. Chem. Ing. Techn. 57(1), 42 (1985)CrossRefGoogle Scholar
  8. 8.
    H.G. Wagner, Flammenbeschleunigung – Zentrales Problem bei der Entschehung von Explosionen. PTB-Mitteilungen. 91(4), 24 (1981)Google Scholar
  9. 9.
    W. Jost, H.G. Wagner, Influence of various parameters on initiation, stability and limits of detonation. (a) AFOSR- 78-3587, 1979, (b) AFOSR- 79 -0117A, 1981, (c) AFOSR-73-2541, 1978Google Scholar
  10. 10.
    K.J. Dörge, D. Pangritz, H.G. Wagner, Experiments on velocity augmentation of the flame by grids. Acta Astr. 3(11/12), 1067–1078 (1976)CrossRefGoogle Scholar
  11. 11.
    P. Wolanski, S. Wojcicki, On mechanism of influence of obstacles on the flame propagation. Arch. Combust. 1(1/2), 69–83 (1981)Google Scholar
  12. 12.
    C.W. Kauffman, J.A. Nicholls, Gaseous detonative fracture of porous materials for enhanced fossil fuel utilization and recovery. UM-016693-F, 1981Google Scholar
  13. 13.
    Гopeв B.A., Mиpoшникoв C.H. Уcкopяющeecя гopeниe в гaзoвыx oбъeмax//Xимичecкaя физикa, 1982. No 6, C. 854–858 (V.A. Gorev, S.N. Miroshnikov, Accelerating combustion in gaseous volumes. Himicheskaya Fizika 6(6), 854–858 (1982))Google Scholar
  14. 14.
    T.F. Kanzleiter, Multi-compartment hydrogen deflagration experiments in Battele (Frankfurt/Main) model containment. WRSIM-89, Rockville, 1989Google Scholar
  15. 15.
    Щeлкин К.И. Bлияниe шepoxoвaтocти тpубы нa вoзникнoвeниe и pacпpocтpaнeниe дeтoнaции в гaзax//ЖЭTФ. 1940. T. 10. C. 823–832 (K.I. Shchelkin, Effect of roughness of the surface in a tube on origination and propagation of detonation in gas. Zh. Exper. Teoretich. Fiziki 10, 823–832 (1940))Google Scholar
  16. 16.
    Щeлкин К.И. К тeopии вoзникнoвeния дeтoнaции в гaзoвыx cмecяx в тpубax//Дoклaды AH CCCP, 1939. T. 23, No 4, C. 636 (K.I. Shchelkin, On theory of detonation onset in gaseous mixtures in tubes. Doklady AN SSSR 23(4), 636 (1939))Google Scholar
  17. 17.
    W. Breitung, A. Eder, C.K. Chan, S.B. Dorofeev, B.E. Gelfand, et al., SOAR on flame acceleration and DDT in nuclear safety. OECD/NEA/CSNI/R, vol. 7, 2000, 321 p.Google Scholar
  18. 18.
    C.W. Kauffman, J.A. Nicholls, Gaseous detonation in porous media. Proc. Combust. Inst. 19, 591 (1982)Google Scholar
  19. 19.
    Лямин Г.A., Пинaeв A.B. Иccлeдoвaниe нeидeaльнoй гaзoвoй дeтoнaции и ee пpeдeлoв в плoтнoй пopиcтoй cpeдe//B cб. «Динaмикa мнoгoфaзныx cpeд». Hoвocибиpcк. 1984. No 68. C. 99–107 (G.A. Lyamin, A.V. Pinaev, Study of non-ideal detonation and its limits in dense porous media. In: “Dinamika mnogofaznyh sred.” Novosibirsk 68, 99–107 (1984))Google Scholar
  20. 20.
    Лямин Г.A., Пинaeв A.B. Cвepxзвукoвoe (дeтoнaциoннoe) гopeниe гaзoв в инepтныx пopиcтыx cpeдax//Дoклaды AH CCCP, 1985. T. 283, No 6. C. 1351–1354 (G.A Lyamin, A.V. Pinaev, Supersonic (detonating) gas combustion in inert porous media. Doklady AN SSSR 283(6), 1351–1354 (1985))Google Scholar
  21. 21.
    J.H. Lee, R. Knystautas, A. Friman, High speed turbulent deflagrations and transition to detonation in H2+air mixtures. Combust. Flame 56(2), 227 (1984)CrossRefGoogle Scholar
  22. 22.
    Бaбкин B.C., Кoзaчeнкo Л.C. Boзникнoвeниe дeтoнaции в гaзax в шepoxoвaтыx тpубax//ЖПMTФ, 1960. No 3, C. 165–174 (V.S. Babkin, L.S. Kozachenko, Detonation onset in obstructed tubes. Zh. Prikl. Mehan. Tehn. Fiziki 3, 165–174 (1960))Google Scholar
  23. 23.
    H. Almstrom, Influence of stone walls on the explosion of an H2 + air mixture in an enclosed space. FOA-C-20408, 1981, 82 p.Google Scholar
  24. 24.
    Пoпoв O.E., Кoгapкo C.M., Фoтeeнкoв B.A. O быcтpoм гopeнии гaзoвыx cмeceй в cpeдe c выcoкoй пopиcтocтью//Дoклaды AH CCCP, 1975. T. 219, No 3. C. 592–595 (O.E. Popov, S.M. Kogarko, V.A. Foteenkov, On fast combustion of gaseous mixtures in a high-porosity medium. Doklady AN SSSR 219(3), 592–595 (1975))Google Scholar
  25. 25.
    Y.B. Zeldovich, A.S. Kompaneets, Theory of Detonation (Academic, New York, 1960), p. 284Google Scholar
  26. 26.
    Кудинoв B.M., Пaлaмapчук Б.И., Лeбeдь C.Г., Бopиcoв A.A., Гeльфaнд Б.E. Ocoбeннocти pacпpocтpaнeния дeтoнaциoнныx вoлн в вoднo-мexaничecкoй пeнe, oбpaзoвaннoй гopючeй гaзoвoй cмecью//Дoклaды AH CCCP, 1977. T. 234, No 1. C. 45–48 (V.M. Kudinov, B.I. Palamarchuk, S.G. Lebed, A.A. Borisov, B.E. Gelfand, Peculiarities of detonation propagation in water-mechanical foam produced by combustible gaseous mixture. Doklady AN SSSR 234(1), 45–48 (1977))Google Scholar
  27. 27.
    A. Friedrich, T. Jordan, J. Grime, A. Kotchourko, K. Sempert, G. Stern, M. Kuznetsov, Experimental study of hydrogen air deflagrations in flat layer, in International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  28. 28.
    Anonymous, Explosion prevention. Leaflet. E 6. February 1980Google Scholar
  29. 29.
    Cычeв A.И. Cтpуктуpa и ocoбeннocти дeтoнaции в cиcтeмe жидкocть+пузыpьки гaзa. Диccepтaция ИГД CO AH CCCP: Hoвocибиpcк, 1988 (A.I. Sychev, Structure and peculiarities of detonation in liquid+gas bubbles system. Dissertation IGD AN SSSR, Novosibirsk, 1988)Google Scholar
  30. 30.
    A.I. Sychev, Detonation waves in a liquid-gas bubble system. Combust. Explos. Shock Waves 21(3), 365–372 (1985)CrossRefGoogle Scholar
  31. 31.
    M. Wolinski, P. Wolanski, Gaseous detonation processes in presence of inert particles. Paper at 13th Colloquium (Intern.) on Dust Explosions, 1987Google Scholar
  32. 32.
    M.P. Sherman, S.R. Tieszen, W.D. Benedick, J.W. Fisle, in The Effect of Transverse Venting of Flame Acceleration and Transition to Detonation in a Large Channel, in ed. by J.R. Bowen, J.-C. Leyer, R.I. Soloukhin. Progress in Astronautics and Aeronautics: Dynamics of Explosions, vol. 106 (AIAA, New York, 1986), p. 66Google Scholar
  33. 33.
    J.E. Shepherd, W.B. Benedick, J.W. Fisk, Analysis of the cellular structure of detonations. Proc. Combust. Inst. 21, 1649–1658 (1988)Google Scholar
  34. 34.
    S.B. Dorofeev, Flame acceleration and DDT in gas explosions. J. de Phys. IV (France) 12, Pr7/3–Pr7/10 (2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations