Advertisement

Concentration Limits of Flame Propagation

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Chapter
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

The dreadful accidents at Three-Mail Island and the Chernobyl nuclear power plant gave a powerful incentive to investigate combustion and concentration limits of flame propagation in hydrogenous mixtures with high steam content at high temperatures and pressures. Analysis of results obtained during large–scale experiments has revealed the fact that the concentration limits of the fast combustion regimes, the deflagration-to-detonation transition and the detonation limits broaden towards leaner mixtures. However, the combustion concentration limit values obtained in laboratory-like environments are also of use.

Keywords

Concentration limits Critical gap Critical tube diameter Flame propagation Ignition energy 

References

  1. 1.
    A.L. Furno, E.B. Cook, J.M. Kuchta, D.S. Burgess, Some observations on near-limit flames. Proc. Combust. Inst. 13, 593–599 (1971)Google Scholar
  2. 2.
    M.G. Zabetakis, Flammability characteristics of combustible gases and vapors. Bulletin 627, Bureau of Mines, Washington, DC, 1965Google Scholar
  3. 3.
    M.G. Zabetakis, Research on the combustion and explosion hazards of hydrogen-water mixtures. Report AECU-3327, Bureau of Mines, Pittsburgh, 1956Google Scholar
  4. 4.
    M. Hertzberg, Flammability limits and pressure development in H2-air mixtures. Pittsburgh Research Center, PRC Report 4305, 1981Google Scholar
  5. 5.
    H. Tamm, R.K. Kumar, W.C. Harrison, A review of recent experiments at WNRE on hydrogen combustion, in Proceedings of the 2nd International Conference on the Impact of Hydrogen on Water Reactor Safety, Albuquerque, 1982, ed. by M. Berman, J. Carey, J. Larkins, L. Thompson (Technical Program Commission) NUREG/CR-0038, SAND82-2456Google Scholar
  6. 6.
    M. Berman, J.C. Cummings, Hydrogen behavior in light-water reactors. Nucl. Safety 25, 53–74 (1984)Google Scholar
  7. 7.
    R.K. Kumar, G.W. Koroll, Hydrogen combustion mitigation concepts for nuclear reactor containment buildings. Nucl. Safety 33, 398–414 (1992)Google Scholar
  8. 8.
    R.K. Kumar, Flammability limits of hydrogen-oxygen-diluent mixtures. J. Fire Sci. 3, 245–262 (1985)CrossRefGoogle Scholar
  9. 9.
    B.W. Marshall Jr., Hydrogen-air-steam flammability limits and combustion characteristics in the FITS vessel. NUREG/CR-3468, SAND84-0383, 1986Google Scholar
  10. 10.
    S.M. Kogarko, A.G. Lyamin, O.E. Popov, A.Y. Kusharin, A.V. Dubrovin, Determination of flame propagation limits in stoichiometric oxyhydrogen mixtures with steam, in Hydrogen Behavior and Control and Related Containment Loading Aspects. IAEA-TC-476.6, Vienna, pp. 37–41, 1984Google Scholar
  11. 11.
    Y.N. Shebeko, S.G. Tsarichenko, A.Y. Korolchenko, A.V. Trunev, V.Y. Navzenya, S.N. Papkov, A.A. Zaitzev, Burning velocities and flammability limits of gaseous mixtures at elevated temperatures and pressures. Combust. Flame 102, 427–437 (1995)CrossRefGoogle Scholar
  12. 12.
    A.B. Tpунeв, Oбecпeчeниe вoдopoднoй пoжapoвзpывoбeзoпacнocти пoмeщeний и тexнoлoгичecкoгo oбopудoвaния мeтoдoм нeйтpaлизaции. Диccepтaция к.т.н., BHИИПO MBД, Бaлaшиxa, 1994 (A.V. Trunev, Ensuring hydrogen fire safety of housing and technology equipment via neutralization. Dissertation k.t.n., VNIIPO MVD, Balashiha, 1994)Google Scholar
  13. 13.
    A.Y. Kusharin, O.E. Popov, G.L. Agafonov, Combustion and shock waves in H2-O2-steam systems, in Proceedings of the 19th ISSW, vol. 2, ed. by R. Brun, L.Z. Dumitrescu (Springer, Berlin, 1995), pp. 143–148Google Scholar
  14. 14.
    A.Y. Kusharin, O.E. Popov, G.L. Agafonov, Initiation of laminar flames in near-limit H2/O2/H2O mixtures. Proc. Combust. Inst. 26, 985–991 (1996)Google Scholar
  15. 15.
    V.A. Bunev, Determination of the concentration limits of flame propagation at elevated temperatures. Combust. Explos. Shock Waves 8(1), 67–69 (1972)CrossRefGoogle Scholar
  16. 16.
    I. Wierzba, B.B. Ale, Effects of temperature and time of exposure on the flammability limits of hydrogen-air mixtures. Int. J. Hydrogen Energy 23, 1197–1202 (1998)CrossRefGoogle Scholar
  17. 17.
    I. Wierzba, V. Kilchyk, Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures. Int. J. Hydrogen Energy 26, 639–643 (2001)CrossRefGoogle Scholar
  18. 18.
    V. Schroeder, K. Holtappels, Explosion characteristics of hydrogen-air and hydrogen-oxygen mixtures at elevated pressures, in International Conference on Hydrogen Safety, Pisa, CD-ROM publication, paper 120001, 2005Google Scholar
  19. 19.
    H.F. Coward, G.W. Jones, Limits of flammability of gases and vapors. Bulletin 503, Bureau of Mines, Washington, DC, 1952Google Scholar
  20. 20.
    F. Schoor, F. Norman, R. Vandermeiren, J. Berghmans, E. Buick, Flammability limits, limiting O2 concentration and minimum inert gas/combustible ratio of H2/CO/N2/Air mixture. Int. J. Hydrogen Energy 4(4), 2069–2075 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Lewis, G. von Elbe, Combustion, Flames and Explosion of Gases, 3rd edn. (Academic, Orlando, 1987). 739 pGoogle Scholar
  22. 22.
    G.A. Karim, I. Wierzba, S. Boon, Some considerations of the lean flammability limits of mixture involving hydrogen. Int. J. Hydrogen Energy 10, 117–123 (1985)CrossRefGoogle Scholar
  23. 23.
    I. Wierzba, G.A. Karim, H. Cheng, The rich flammability limits of fuel mixtures containing hydrogen. Am. Inst. Chem. Eng. 82, 251 (1986)Google Scholar
  24. 24.
    I. Wierzba, Q. Wang, The flammability limits of H2-CO-CH4 mixtures in air at elevated temperatures. Int. J. Hydrogen Energy 31, 485–489 (2006)CrossRefGoogle Scholar
  25. 25.
    I. Wierzba, B.B. Ale, Rich flammability limits of fuel mixtures involving hydrogen at elevated temperature. Int. J. Hydrogen Energy 25, 75–80 (2000)CrossRefGoogle Scholar
  26. 26.
    V.V. Azatyan, Y.N. Shebeko, A.Y. Shebeko, V.Y. Navzenya, A.V. Tomilin, An influence of oxygen content in an oxidizing atmosphere on inhibitive action of fluorinated agents on hydrogen flame. Paper at the 6th international symposium on hazards, prevention and mitigation of industrial explosions, Canada, 2006Google Scholar
  27. 27.
    J.A. Syage, E.W. Fournier, R. Rianda, R.B. Cohen, Dynamics of flame propagation using laser-induced spark initiation: Ignition energy measurements. J. Appl. Phys. 64, 1499–1507 (1988)CrossRefGoogle Scholar
  28. 28.
    M.R. Swain, P.A. Filoso, M.N. Swain, Ignition of lean hydrogen-air mixtures. Int. J. Hydrogen Energy 30(13/14), i447–i455 (2005)Google Scholar
  29. 29.
    R.A. Strehlow, Combustion Fundamentals (McGraw-Hill, New York, 1984)Google Scholar
  30. 30.
    R. Pritchard, J.J. Guy, N.B. Connor, Handbook of Industrial Gas Utilization (Van Nostrand Reinhold, New York, 1977)Google Scholar
  31. 31.
    R.M. Fristrom, A.A. Westenberg, Flame Structures (McGraw-Hill, New York, 1965)Google Scholar
  32. 32.
    L.M. Das, Hydrogen-oxygen reaction mechanism and its implication to hydrogen engine combustion. Int. J. Hydrogen Energy 21, 703–715 (1996)CrossRefGoogle Scholar
  33. 33.
    A. Teodorczyk, Fast deflagrations, deflagration to detonation transition (DDT) and direct detonation initiation in hydrogen-air mixtures. Paper at 1st European Summer School on Hydrogen Safety, Belfast, August, 2006Google Scholar
  34. 34.
    M.C. Ross, J.E. Shepherd, Lean combustion characteristics of H2+N2O+NH3 mixtures in air. EDL report FM96-4.1996.CalTech, 1996Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations