Advertisement

Turbulent Combustion of Hydrogenous Gas Mixtures

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Chapter
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

Turbulence affects combustion by influencing a flame surface. This phenomenon has a dual effect. On the one hand, the turbulence raises the rate of combustion due to the intensive transfer of heat and active particles to the unburned gas and from the increase of the flame surface area resulting from its curvature and fragmentation. On the other hand, the turbulence causes reduction of the velocity by the local stretch-effect. Therefore, intensive turbulence may result in flame extinction.

Keywords

Explosion suppression Flame surface Optical diagnostics Turbulent burning velocity Turbulent pulsations 

References

  1. 1.
    Кapпoв B.П., Ceмeнoв E.C., Coкoлик A.C. Tуpбулeнтнoe гopeниe в зaмкнутoм oбъeмe//Дoклaды AH CCCP, 1959. T. 128, № 6, C. 1220–1223 (V.P. Karpov, E.S. Semenov, A.S. Sokolik, Turbulent combustion in closed volume. Doklady AN SSSR 128(6), 1220–1223 (1959)Google Scholar
  2. 2.
    A.S. Sokolik, V.P. Karpov, E.S. Semenov, Turbulent combustion of gases. Combust. Explos. Shock Waves 3(1), 36–45 (1967)CrossRefGoogle Scholar
  3. 3.
    T.D. Fansler, E.G. Groff, Turbulence characteristics of a fan-stirred combustion vessel. Combust. Flame 80, 350–354 (1990)CrossRefGoogle Scholar
  4. 4.
    V. Sick, M.R. Hartman, V.S. Arpaci, R.W. Anderson, Turbulent scales in a fan-stirred bomb. Combust. Flame 127, 2119–2123 (2001)CrossRefGoogle Scholar
  5. 5.
    R.G. Abdel-Gayed, D. Bradley, Dependence of turbulent burning velocity on turbulent Reynolds number and ratio of laminar burning velocity to r.m.s. turbulent velocity. Proc. Combust. Inst. 16, 1725–1735 (1977)Google Scholar
  6. 6.
    R.G. Abdel-Gayed, K.J. Al-Khishali, D. Bradley, Turbulent burning velocities and flame straining in explosions. Proc. R. Soc. Lond. A391, 393–414 (1984)Google Scholar
  7. 7.
    A. Lipatnikov, J. Chomiak, Turbulent burning velocity and speed of developing, curved, and strained flames. Proc. Combust. Inst. 29, 2113–2121 (2002)CrossRefGoogle Scholar
  8. 8.
    Кapпoв B.П., Ceвepин E.C. Tуpбулeнтныe cкopocти выгopaния гaзoвыx cмeceй для oпиcaния cгopaния в двигaтeляx//B cб. «Xимичecкaя физикa гopeния и взpывa. Гopeниe гeтepoгeнныx и гaзoвыx cиcтeм», Чepнoгoлoвкa, 1977. C. 74–76. (V.P. Karpov, E.S. Severin, Turbulent burning rates of gaseous mixtures for description of burning in engines. In: “Khimicheskaya Fizika Gorenia i Vzryva. Gorenie geterogennyh i gasovyh sistem”, Chernogolovka, 1977, pp. 74–76)Google Scholar
  9. 9.
    K.J. Al-Khishali, D. Bradley, S.F. Hall, Turbulent combustion of near-limit hydrogen-air mixtures. Combust. Flame 54, 61–70 (1983)CrossRefGoogle Scholar
  10. 10.
    Кapпoв B.П., Ceвepин E.C. Tуpбулeнтнoe гopeниe oкoлoпpeдeльныx cмeceй вoдopoдa//Дoклaды AH CCCP, 1978. T. 239, № 1. C. 123–125 (V.P. Karpov, E.S. Severin, Turbulent combustion of near-limit hydrogen mixtures. Doklady AN SSSR, 239(1), 123–125 (1978)Google Scholar
  11. 11.
    L.S. Kozachenko, I.L. Kuznetsov, Burning velocity in a turbulent stream of a homogeneous mixture. Combust. Explos. Shock Waves 1(1), 22–30 (1965)CrossRefGoogle Scholar
  12. 12.
    B. Lewis, G. von Elbe, Combustion, Flames and Explosion of Gases, 3rd edn. (Academic, Orlando, 1987), p. 739Google Scholar
  13. 13.
    R.G. Abdel-Gayed, D. Bradley, Criteria for turbulent propagation limits of premixed flames. Combust. Flame 62, 61–68 (1985)CrossRefGoogle Scholar
  14. 14.
    M. Berman, J.C. Cummings, Hydrogen behavior in light-water reactors. Nucl. Safety 25, 53–74 (1984)Google Scholar
  15. 15.
    R.K. Kumar, G.W. Koroll, Hydrogen combustion mitigation concepts for nuclear reactor containment buildings. Nucl. Safety 33, 398–414 (1992)Google Scholar
  16. 16.
    S.S. Tsai, N.J. Liparulo, Fog inerting criteria for hydrogen-air mixtures, in Proceeding of 2nd international Conference on Hydrogen Impact on Water Reactor Safety, NUREG/CP 0038, Albuquerque, 1982, pp. 727–739Google Scholar
  17. 17.
    I.I. Glass, G.N. Patterson, A theoretical and experimental study of shock tube flows. J. Aerospace Sci. 22(2), 73–100 (1953)Google Scholar
  18. 18.
    H. Kawada, Y. Mory, A shock tube study on condensation kinetics. Bull. JSME 16(97), 1053–1065 (1973)CrossRefGoogle Scholar
  19. 19.
    D. Barschdorf, Carrier gas effects on homogeneous nucleation of water vapor in a shock tube. Phys. Fluids 18(5), 529–533 (1975)CrossRefGoogle Scholar
  20. 20.
    S. Kotake, I.I. Glass, Condensation of water vapor in rarefaction waves: homogeneous nucleation. AIAA J. 14(12), 1731–1737 (1977)Google Scholar
  21. 21.
    S. Kotake, I.I. Glass, Condensation of water vapor in rarefaction waves: heterogeneous nucleation. AIAA J. 15(2), 215–221 (1977)CrossRefGoogle Scholar
  22. 22.
    I.I. Glass, S.P. Kalra, J.P. Sislian, Condensation of water vapor in rarefaction waves: experimental results. AIAA J. 15(5), 686–693 (1977)CrossRefGoogle Scholar
  23. 23.
    D.L. Hastings, J.P. Hodson, The formation of an aqueous fog in a shock tube. J. Phys. D: Appl. Phys. 12(12), 2111–2122 (1979)CrossRefGoogle Scholar
  24. 24.
    H.J. Smolders, J.F.H. Willems, H.C. de Lange, M.E.H. van Dongen, Wave induced growth and evaporation of droplets in a vapor-gas mixture, in 17th Symposium (International) on Shock Waves and Shock Tubes A.I.P.Conference Proceedings. ed. by Y.M. Kim, vol. 208, Bethlehem, 1989, pp. 802–807,Google Scholar
  25. 25.
    H.J. Smolders, Non-linear wave phenomena in gas-vapor mixture with phase transition: Ph.D. thesis, University of Technology, Eindhoven, 1992Google Scholar
  26. 26.
    K.N.H. Looijmans, P.C. Kriesels, M.E.H. van Dongen, Gasdynamic aspects of modified expansion shock tube for nucleation and condensation studies. Exp. Fluids 15(1), 61–64 (1993)CrossRefGoogle Scholar
  27. 27.
    K.N.H. Looijmans, J.F.H. Willems, M.E.H. van Dongen, On the principle, design and performance of an expansion-shock tube for nucleation studies, in Proceedings of 19th Symposium Shock Waves, ed. by R. Brun, L. Dumitrescu, vol. 1, Marsielle, 1995, pp. 215–220Google Scholar
  28. 28.
    S.P. Medvedev, B.E. Gelfand, V.V. Zhukov, A.M. Bartenev, S.V. Khomik, A.N. Polenov, Study of turbulent combustion of hydrogen-air-steam-water fog mixtures prepared by sudden expansion technique. CD-ROM Proceedings of 17-th ICDERS, paper No 025, Heidelberg University, Germany, 25–30 July 1999Google Scholar
  29. 29.
    S.P. Medvedev, B.E. Gelfand, A.N. Polenov, S.V. Khomik, Flammability limits for hydrogen-air mixtures in the presence of ultrafine droplets of water fog. Combust. Explos. Shock Waves 38(4), 381–386 (2002)CrossRefGoogle Scholar
  30. 30.
    A.M. Bartenev, B.E. Gelfand, S.P. Medvedev, A.N. Polenov, S.V. Khomik, Dynamics of formation and parameters of a fog upon abrupt expansion of a compressed vapor-gas volume. High Temp. 40(2), 272–277 (2002)CrossRefGoogle Scholar
  31. 31.
    R.K. Kumar, Flammability limits of hydrogen-oxygen-diluent mixtures. J. Fire Sci. 3, 245–262 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations