Laminar and Cellular Combustion of Hydrogenous Gaseous Mixtures

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)


Both stabilized flame velocity and expanding flame velocity can be measured in premixed gases (Fig. 2.1). The flame can be stabilized in various burners including opposed jet burners.


Additives Flame propagation Laminar flame 


  1. 1.
    G.E. Andrews, D. Bradley, Determination of burning velocities: a critical review. Combust. Flame 18, 133–153 (1972)CrossRefGoogle Scholar
  2. 2.
    G.E. Andrews, D. Bradley, Determination of burning velocity by double ignition in a closed vessel. Combust. Flame 20, 77–89 (1973)CrossRefGoogle Scholar
  3. 3.
    C.J. Rallis, A.M. Garforth, The determination of laminar burning velocity. Progr. Energy Combust. Sci. 6, 303–329 (1980)CrossRefGoogle Scholar
  4. 4.
    J.W. Linnett, Methods of measuring burning velocities. Proc. Combust. Inst. 4, 20–35 (1953)Google Scholar
  5. 5.
    E.F. Fiock, Measurement of burning velocity, in Physical Measurements in Gas Dynamics and Combustion, ed. by R. Ladenburg, B. Lewis et al. (Oxford University Press, London, 1955). Chap. 11Google Scholar
  6. 6.
    L.N. Khitrin, The physics of combustion and explosion. Israel Program for Scientific Translations, 1962, 448 p. JerusalemGoogle Scholar
  7. 7.
    A.G. Gaydon, H.G. Wolfhard, Flames: Their Structure, Radiation and Temperature (Chapman & Hall, London, 1979). 449 pGoogle Scholar
  8. 8.
    R.M. Fristrom, Definition of burning velocity and a geometric interpretation of the effects of flame curvature. Phys. Fluids 8(2), 273–280 (1965)zbMATHCrossRefGoogle Scholar
  9. 9.
    Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985). 597 pCrossRefGoogle Scholar
  10. 10.
    V.A. Michelson, Uber die normale Entzundungsgeschwindigkeit Explosiver Gasgemische. Annalen der Physik und Chemie 37, 1–24 (1889)Google Scholar
  11. 11.
    J.G. Der, Zundvorgang in Gasgemischen (Oldenburg, Berlin, 1934)Google Scholar
  12. 12.
    B. Lewis, G. von Elbe, Combustion, Flames and Explosion of Gases, 3rd edn. (Academic, Orlando, 1987). 739 pGoogle Scholar
  13. 13.
    Кoзaчeнкo Л.C. Иccлeдoвaниe зaвиcимocти cкopocти pacпpocтpaнeния плaмeни oт физикo-xимичecкиx cвoйcтв тoпливa и aэpoдинaмики тeчeния гaзa. Диccepтaция. Инcтитут xимичecкoй физики AH CCCP, Mocквa, 1954 (L.S. Kozachenko, The study of flame propagation velocity dependence on physical-chemical fuel properties and gas flow aerodynamics. Dissertation, Institute of Chemical Physics, USSR Academy of Sciences, Moscow, 1954)Google Scholar
  14. 14.
    I. Drell, F. Belles, Survey of hydrogen combustion properties. NACA Report 1383, 1958Google Scholar
  15. 15.
    E. Bartholome, Zur Metodik der Messung von Flamengeschwindigkeiten. Z. Elektrochem. 53(4), 191–196 (1949)Google Scholar
  16. 16.
    R. Gunther, G. Janisch, Measurements of burning velocity in a flat flame front. Combust. Flame 19, 49–53 (1972)CrossRefGoogle Scholar
  17. 17.
    F. Takahashi, M. Mizomoto, S. Ikai, Alternative energy sources, in Nuclear Energy. Synthetic Fuels, ed. by T. Nejat Veziroglu, vol. 5 (New York, McGraw-Hill, 1983), p. 447Google Scholar
  18. 18.
    C.K. Wu, C.K. Law, On the determination of laminar flame speeds from stretched flames. Proc. Combust. Inst. 20, 1941–1949 (1984)Google Scholar
  19. 19.
    D. Liu, R. MacFarlane, Laminar burning velocities of hydrogen-air flames. Combust. Flame 49, 59–71 (1983)CrossRefGoogle Scholar
  20. 20.
    G.W. Koroll, R.K. Kumar, E.M. Bowles, Burning velocities of hydrogen-air mixtures. Combust. Flame 94, 330–340 (1993)CrossRefGoogle Scholar
  21. 21.
    J. Manton, B.B. Milliken, Study of pressure dependence of burning velocity by the spherical vessel method, in Proceedings of the Gas Dynamics Symposium (Aerothermochemistry), Northwestern University, Evanston, 1956, pp. 151–157Google Scholar
  22. 22.
    B. Fine, Stability limits and burning velocities of laminar hydrogen-air flames at reduced pressures. NACA TN 3833, 1956Google Scholar
  23. 23.
    S. Heimel, Effect of initial mixture temperature on burning velocity of hydrogen-air mixtures with preheating and simulated preburning. NACA TN 4156, 1957Google Scholar
  24. 24.
    J. Grumer, E.B. Cook, T.A. Kubala, Considerations pertaining to spherical-vessel combustion. Combust. Flame 3, 437–446 (1959)CrossRefGoogle Scholar
  25. 25.
    D.A. Senior, Burning velocities of hydrogen-air and hydrogen-oxygen mixtures. Combust. Flame 5, 7–10 (1961)CrossRefGoogle Scholar
  26. 26.
    T. Iijima, T. Takeno, Effects of temperature and pressure on burning velocity. Combust. Flame 65, 35–43 (1986)CrossRefGoogle Scholar
  27. 27.
    D.R. Dowdy, D.B. Smith, S.C. Taylor, A. Williams, The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. Proc. Combust. Inst. 23, 325–332 (1990)Google Scholar
  28. 28.
    F.N. Egolfopoulos, C.K. Law, An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations. Proc. Combust. Inst. 23, 333–340 (1990)Google Scholar
  29. 29.
    C.M. Vagelopoulos, F.N. Egolfopoulos, C.K. Law, Further consideration of the determination of laminar flame speeds with the counterflow twin flame technique. Proc. Combust. Inst. 25, 1341–1347 (1994)Google Scholar
  30. 30.
    K.T. Aung, M.I. Hassan, G.M. Faeth, Effects of pressure and nitrogen dilution on flame/stretch interactions of laminar premixed H2/O2/N2 flames. Combust. Flame 112, 1–16 (1998)CrossRefGoogle Scholar
  31. 31.
    S.D. Tse, D.L. Zhu, C.K. Law, Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres. Proc. Combust. Inst. 28, 1793–1800 (2000)CrossRefGoogle Scholar
  32. 32.
    V.S. Babkin, Y.G. Kononenko, Equations for determining normal flame velocity in a constant-volume spherical bomb. Combust. Explos. Shock Waves 3(2), 168–171 (1967)CrossRefGoogle Scholar
  33. 33.
    V.S. Babkin, V.I. Babushok, Initial stage of gas combustion in a closed vessel. Combust. Explos. Shock Waves 13(1), 19–23 (1977)CrossRefGoogle Scholar
  34. 34.
    H. Behrens, Flame instabilities and combustion mechanism. Proc. Combust. Inst. 4, 538–545 (1953)Google Scholar
  35. 35.
    I.E. Garside, B. Jackson, The formation and some properties of polyhedral burner flames. Proc. Combust. Inst. 4, 545–552 (1953)Google Scholar
  36. 36.
    C.K. Law, S. Ishizuka, P. Cho, On the opening of premixed bunsen flame tips. Combust. Sci. Technol. 28, 89–96 (1982)CrossRefGoogle Scholar
  37. 37.
    J.D.A. Buckmaster, Mathematical description of open and closed flame tips. Combust. Sci. Technol. 20, 33–40 (1979)CrossRefGoogle Scholar
  38. 38.
    G. Dixon-Lewis, Spherically symmetric flame propagation in hydrogen-air mixtures. Combust. Sci. Technol. 34, 1–29 (1983)CrossRefGoogle Scholar
  39. 39.
    A.M. Garforth, C.J. Rallis, The spherical bomb method for laminar burning velocity determination: equipment, experimental procedure and data handling. Report No. 65, University of the Witwatersrand, Johannesburg, 1976Google Scholar
  40. 40.
    D. Bradley, A. Mitcheson, Mathematical solution for explosions in spherical vessels. Combust. Flame 26, 201–217 (1976)CrossRefGoogle Scholar
  41. 41.
    B.E. Milton, J.C. Keck, Laminar burning velocities in stoichiometric hydrogen and hydrogen-hydrocarbon gas mixtures. Combust. Flame 58, 13–22 (1984)CrossRefGoogle Scholar
  42. 42.
    O.C. Kwon, G. Rozenchan, C.K. Law, Cellular instabilities and self-acceleration of outwardly propagating spherical flames. Proc. Combust. Inst. 29, 1775–1783 (2002)CrossRefGoogle Scholar
  43. 43.
    C.J. Sun, C.J. Sung, L. He, C.K. Law, Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters. Combust. Flame 118, 108–128 (1999)CrossRefGoogle Scholar
  44. 44.
    G.W. Koroll, S.R. Mulpuru, The effect of dilution with steam on the burning velocity and structure of premixed hydrogen flames. Proc. Combust. Inst. 21, 1811–1819 (1986)Google Scholar
  45. 45.
    S.M. Kogarko, A.G. Lyamin, O.E. Popov, A.Y. Kusharin, A.V. Dubrovin, Determination of flame propagation limits in stoichiometric oxyhydrogen mixtures with steam. In: Hydrogen Behaviour and Control and Related Containment Loading Aspects. IAEA-TC-476.6, Vienna, 1984, pp. 37–41Google Scholar
  46. 46.
    B.W. Marshall Jr., Hydrogen-air-steam flammability limits and combustion characteristics in the FITS vessel. NUREG/CR-3468, SAND84-0383, 1986Google Scholar
  47. 47.
    J.K. Worrell, S.C. Taylor, C. Robinson, D.B. Smith, The use of detailed computer modeling to test burning velocity and Markstein length measurement using expanding spherical flames, in Proceedings of the Anglo-German Combustion Symposium, Cambridge, UK, 1993, pp. 364–367Google Scholar
  48. 48.
    M.J. Brown, I.C. McLean, D.B. Smith, S.C. Taylor, Markstein lengths of CO/H2/air flames, using expanding spherical flames. Proc. Combust. Inst. 26, 875–881 (1996)Google Scholar
  49. 49.
    O.C. Kwon, G.M. Faeth, Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions. Combust. Flame 124, 590–610 (2001)CrossRefGoogle Scholar
  50. 50.
    K.T. Aung, M.I. Hassan, G.M. Faeth, Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combust. Flame 109, 1–24 (1997)CrossRefGoogle Scholar
  51. 51.
    Пoпoв O.E. Лaминapнaя cкopocть гopeния в cфepичecкoм гaзoвoм плaмeни. Xимичecкaя физикa пpoцeccoв гopeния и взpывa, 12 Cимпoзиум пo гopeнию и взpыву. Чepнoгoлoвкa, 2000, ч.1. C. 128–129 (O.E. Popov, Laminar burning velocity in spherical gas flame. Khimicheskaya Fizika Processov Gorenia i Vzryva. Chernogolovka, 2000, part 1, pp. 128–129)Google Scholar
  52. 52.
    L.-K. Tseng, M.A. Ismail, G.M. Faeth, Laminar burning velocities and Markstein numbers of hydrocarbon/air flames. Combust. Flame 95, 410–426 (1993)CrossRefGoogle Scholar
  53. 53.
    G.W. Koroll, R.K. Kumar, C.K. Chan, Combustion behaviour in the moderator cover gas, in Proceedings of the 9th Annual Canadian Nuclear Society Conference, Winnipeg, 1988, pp. 238–244Google Scholar
  54. 54.
    F. Behrendt, J. Warnatz, The dependence of flame propagation in H2-O2-N2 mixtures on temperature, pressure and initial composition. Int. J. Hydrogen Energy 10, 749–755 (1985)CrossRefGoogle Scholar
  55. 55.
    F. Mauss, N. Peters, B. Rogg, F.A. Williams, Reduced kinetic mechanisms for premixed hydrogen flames, in Reduced Kinetic Mechanisms for Applications in Combustion Systems, ed. by N. Peters, B. Rogg. Lecture notes in physics, vol. 15 (Springer, Heidelberg, 1993), p. 29Google Scholar
  56. 56.
    G. Dixon-Lewis, Kinetic mechanism, structure and properties of premixed flames in hydrogen-oxygen-nitrogen mixtures. Phil. Trans. R. Soc. London A292(1388), 45–99 (1979)Google Scholar
  57. 57.
    M.D. Smooke, J.A. Miller, R.J. Kee, Determination of adiabatic flame speeds by boundary value methods. Combust. Sci. Technol. 34, 79–90 (1983)CrossRefGoogle Scholar
  58. 58.
    R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, A Fortran program for modeling steady laminar one-dimensional flames. Sandia Report SAND85-8240, 1985Google Scholar
  59. 59.
    D.B. Spalding, The theory of flow phenomena with a chain reaction. Phil. Trans. R. Soc. London A249, 1–25 (1956)Google Scholar
  60. 60.
    Кушapин A.Ю., Пoпoв O.E., Aгaфoнoв Г.Л. Hopмaльныe cкopocти плaмeни в cмecяx гpeмучeгo гaзa c вoдяным пapoм. Xимичecкaя физикa, 1995. T. 14, № 4. C. 179–189 (A.Y. Kusharin, O.E. Popov, G.L. Agafonov, Normal flame velocities in mixtures of oxyhydrogen gas with water steam. Himicheskaya Fizika 14(4), 179–189 (1995))Google Scholar
  61. 61.
    R.A. Yetter, F.L. Dryer, H. Rabitz, A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics. Combust. Sci. Technol. 79, 97–128 (1991)CrossRefGoogle Scholar
  62. 62.
    R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A FORTRAN computer code package for the evaluation of gas-phase, multicomponent transport properties. Sandia Report SAND86-8246, 1986Google Scholar
  63. 63.
    N.M. Marinov, C.K. Westbrook, W.J. Pitz, Detailed and Global Chemical Kinetics Model for Hydrogen. Lawrence Livermore National Laboratory, Preprint UCRL-JC-120677, 1995Google Scholar
  64. 64.
    D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, Th Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz, Evaluated kinetic data for combustion modelling. J. Phys. Chem. Ref. Data 21(3), 411–736 (1992)CrossRefGoogle Scholar
  65. 65.
    D.L. Baulch, C.J. Cobos, R.A. Cox, P. Frank, G. Hayman, Th Just, J.A. Kerr, T. Murrels, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz, Summary table of evaluated kinetic data for combustion modeling: supplement I. Combust. Flame 98, 59–79 (1994)CrossRefGoogle Scholar
  66. 66.
    R. Edse, L.R. Lawrence, Detonation induction phenomena and flame propagation rates in low temperature hydrogen-oxygen mixtures. Combust. Flame 13, 479–486 (1969)CrossRefGoogle Scholar
  67. 67.
    B. Lewis, AGARD Selected Combustion Problems: Fundamentals and Aeronautical Applications (Butterworths Science, London, 1954), pp. 176–179Google Scholar
  68. 68.
    R.A. Strehlow, Fundamentals of Combustion (Int. Textbook Company, Scranton, 1968)Google Scholar
  69. 69.
    Y.N. Shebeko, S.G. Tsarichenko, A.Y. Korolchenko, A.V. Trunev, V.Y. Navzenya, S.N. Papkov, A.A. Zaitzev, Burning velocities and flammability limits of gaseous mixtures at elevated temperatures and pressures. Combust. Flame 102, 427–437 (1995)CrossRefGoogle Scholar
  70. 70.
    B.E. Gelfand, O.E. Popov, V.P. Karpov, A.Y. Kusharin, G.L. Agafonov, Laminar and turbulent flame propagation in hydrogen-air-steam mixtures at accident relevant pressure-temperature conditions. Report IChPh-INR, 1995Google Scholar
  71. 71.
    V.S. Babkin, A.V. V’yun, Inhibition of hydrogen-air flame at high pressures. Combust. Explos. Shock Waves 17(5), 483–488 (1981)CrossRefGoogle Scholar
  72. 72.
    J.T. Agnew, L.B. Graiff, The pressure dependence of laminar burning velocity by the spherical bomb method. Combust. Flame 5, 209–219 (1961)CrossRefGoogle Scholar
  73. 73.
    A.Y. Kusharin, O.E. Popov, G.L. Agafonov, Burning velocities of oxygen-hydrogen mixtures with steam. Chem. Phys. Rep. 14(4), 584–594 (1995)Google Scholar
  74. 74.
    M. Kuznetsov, J. Grune, R. Redlinger, W. Breitung, N. Ichikawa, Laminar burning velocities of hydrogen-oxygen-steam mixtures at various temperatures and pressures, in Proceedings of 3rd European Combustion Meeting, ECM 2007, ChaniaGoogle Scholar
  75. 75.
    Y.N. Shebeko, A.Y. Korol’chenko, S.G. Tsarichenko, V.Y. Navtsenya, V.L. Malkin, Effects of the initial prssure and temperature on the combustion characteristics of hydrogen-containing mixtures. Combust. Explos. Shock Waves 25(3), 289–292 (1989)CrossRefGoogle Scholar
  76. 76.
    T.G. Sholte, P.B. Vaags, Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air. Combust. Flame 3, 511–524 (1959)CrossRefGoogle Scholar
  77. 77.
    I.C. McLean, D.B. Smith, S.C. Taylor, The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction. Proc. Combust. Inst. 25, 749–757 (1994)Google Scholar
  78. 78.
    A.A. Konnov, Detailed reaction mechanism for small hydrocarbons combustion, 2007,
  79. 79.
    M.I. Hassan, K.T. Aung, G.M. Faeth, Properties of laminar premixed CO/H2/air flames at various pressures. J. Propul. Power 13, 239–245 (1997)CrossRefGoogle Scholar
  80. 80.
    Кapпoв B.П., Кушapин A.Ю., Пoпoв O.E., Гeльфaнд Б.E. Экcпepимeнтaльныe нaблюдeния и чиcлeннoe мoдeлиpoвaниe гopeния в бeдныx cмecяx H2-CO-вoздуx в cфepичecкoй бoмбe. Xимичecкaя физикa пpoцeccoв гopeния и взpывa, 12 Cимпoзиум пo гopeнию и взpыву. Чepнoгoлoвкa, 2000, ч.1. C. 72–74 (V.P. Karpov, A.Y. Kusharin, O.E. Popov, B.E. Gelfand, Experimental observations and numerical simulation of burning in lean H2-CO-air mixtures in spherical bomb. Khimicheskaya Fizika Processov Gorenia i Vzryva. Chernogolovka, 2000, part 1, pp. 72–74)Google Scholar
  81. 81.
    O.E. Popov, V.P. Karpov, B.E. Gelfand, S.V. Khomik, Combustion and explosion characteristics of H2-CO-air mixtures, in Proceedings of Third Asia-Pacific Conference on Combustion, Seoul, 2001, pp. 730–733Google Scholar
  82. 82.
    B.E. Gelfand, V.P. Karpov, O.E. Popov, Turbulent flames in lean H2-air-CO2 mixtures, in Proceedings of First Mediterranean Symposium on Combustion, Antalya, 1999, pp. 1000–1006Google Scholar
  83. 83.
    Y. Dong, C.M. Vagelopoulos, G.R. Spedding, F.N. Egolfopoulos, Measurement of laminar flame speeds through digital particle image velocimetry: mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium. Proc. Combust. Inst. 29, 1419–1426 (2002)CrossRefGoogle Scholar
  84. 84.
    C.M. Vagelopoulos, F.N. Egolfopoulos, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane and air. Proc. Combust. Inst. 25, 1317–1323 (1994)Google Scholar
  85. 85.
    C.T. Bowman, M. Frenklach, W.R. Gardiner, G. Smith, The GRI 3.0 chemical kinetic mechanism, 1999,
  86. 86.
    J.Y. Ren, W. Qin, F.N. Egolfopoulos, T.T. Tsotsis, Strain-rate effects on hydrogen-enhanced lean premixed combustion. Combust. Flame 124, 717–720 (2001)CrossRefGoogle Scholar
  87. 87.
    V. Di Sarli, A. Di Benedetto, Laminar burning velocity of hydrogen-air premixed flames. Int. J. Hydrog. Energy 32, 637–646 (2007)CrossRefGoogle Scholar
  88. 88.
    K.S. Raman, Laminar burning velocities of lean H2+air mixtures. EDL report FM97-15, CalTech, 1997Google Scholar
  89. 89.
    Y. Wu, Y. Lu, I.S. Al-rachbi, G.T. Kalghati, Prediction of the liftoff, blowout and blowoff stability limits of pure hydrogen and hydrogen/hydrocarbon mixture jet flames. International Conference on Hydrogen Safety, San Sebastian, Spain, 2007Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations