Skip to main content

Combustion and Explosion Characteristics of Non-premixed and Partially Pre-mixed Mixtures

  • Chapter
  • First Online:
Book cover Thermo-Gas Dynamics of Hydrogen Combustion and Explosion

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 2144 Accesses

Abstract

Two significantly different fuel and oxidizer forms are considered while analyzing potentially combustible systems: pre-mixed and non-premixed mixtures. The previous chapters are devoted to combustion modes in pre-mixed mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.E. Shepherd, Hydrogen-steam jet-flame facility and experiments. NUREG/CR-3638, SAND84-0060, 1984

    Google Scholar 

  2. J.E. Shepherd, Analysis of diffusion flame tests. NUREG/CR-4534, SAND86-0419, 1987

    Google Scholar 

  3. J.R. Travis, A heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments. Nucl. Eng. Design 101, 149–166 (1987)

    Article  Google Scholar 

  4. C.K. Chan, A. Guerrero, The structure of horizontal hydrogen-steam diffusion flames, in Proceedings of the OECD/NEA/CSNI Workshop of the Implementation of Hydrogen Mitigation Techniques, AECL-11762, NEA/CSNI/R(96)8, Whiteshell Laboratories, Pinawa, 1997

    Google Scholar 

  5. W. Luangdilok, R.J. Hammersley, J. Scobel, Analysis of diffusion flames on the IRWST vents of the Westinghouse AP600 during severe accidents. International Meeting on Advanced Reactors Safety – ARS’97, Orlando, 1–5 June 1997

    Google Scholar 

  6. Зeльдoвич Я.Б. К тeopии гopeния нeпepeмeшaнныx гaзoв//ЖTФ, 1949. T. 19, C. 1199–1210 (Y.B. Zeldovich, On the theory of combustion of non-mixed gases. Zh. Tehnich. Fiziki 19, 1199–1210 (1949))

    Google Scholar 

  7. D.B. Spalding, A theory of the extinction of diffusion flames. Fuel 22, 22–35 (1954)

    Google Scholar 

  8. S.P. Burke, T.E.W. Schumann, Diffusion flames. Ind. Eng. Chem. 20, 998–1004 (1928)

    Article  Google Scholar 

  9. Швaб B.A. Cвязь мeжду тeмпepaтуpными и cкopocтными пoлями гaзoвoгo фaкeлa//B cб. «Иccлeдoвaниe пpoцeccoв гopeния нaтуpaльнoгo тoпливa». Гocэнepгoиздaт, 1948, C. 231–248 (V.A. Shwab, Relation between temperature and velocity fields of gaseous flare. In: “Study of natural fuel combustion processes”, Gosenergoizdat, 1948, pp. 231–248)

    Google Scholar 

  10. Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985), p. 597

    Book  Google Scholar 

  11. F.A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, 2nd edn. (Benjamin/Cummings, Menlo Park, 1985)

    Google Scholar 

  12. H.G. Im, J.H. Chen, Structure and propagation of triple flames in partially premixed hydrogen-air mixtures. Combust. Flame 119, 436–454 (1999)

    Article  Google Scholar 

  13. P.N. Kioni, B. Rogg, K.N.C. Bray, A. Linan, Flame spread in laminar mixing layers: the triple flame. Combust. Flame 95, 276–290 (1993)

    Article  Google Scholar 

  14. H. Phillips, Flame in a buoyant methane layer. Proc. Combust. Inst. 10, 1277–1283 (1965)

    Article  Google Scholar 

  15. H.G. Im, J.H. Chen, Effects of flow strain on triple flame propagation. Combust. Flame 126, 1384–1392 (2001)

    Article  Google Scholar 

  16. J.E. Broadwell, W.J.A. Dahm, M.G. Mungal, Blowout of turbulent flames. Proc. Combust. Inst. 20, 303–310 (1984)

    Article  Google Scholar 

  17. L. Muniz, M.G. Mungal, Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111, 16–31 (1997)

    Article  Google Scholar 

  18. L. Vanquickenborne, A. van Tiggelen, The stabilization mechanism of lifted diffusion flames. Combust. Flame 10, 59–69 (1966)

    Article  Google Scholar 

  19. W.M. Pitts, Assessment of theories for the behavior and blowout of lifted turbulent jet diffusion flames. Proc. Combust. Inst. 22, 809–816 (1988)

    Article  Google Scholar 

  20. N. Peters, F.A. Williams, Lift-off characteristics of turbulent jet diffusion flames. AIAA J 21, 423–429 (1983)

    Article  Google Scholar 

  21. C.M. Muller, H. Breitbach, N. Peters, Partially premixed turbulent flame propagation in jet flames. Proc. Combust. Inst. 25, 1099–1016 (1994)

    Article  Google Scholar 

  22. V.K. Baev, V.A. Yasakov, Influence of buoyant forces on the length of diffuse flames. Combust. Explos. Shock Waves 10(6), 752–756 (1974)

    Article  Google Scholar 

  23. Y.M. Annushkin, E.D. Sverdlov, Stability of submerged flames in subsonic and underexpanded supersonic gas-fuel streams. Combust. Explos. Shock Waves 14(5), 597–605 (1978)

    Article  Google Scholar 

  24. Кoмoв B.Ф., Peутт B.Ч., Шeвякoв Г.Г., Гoлoмa К.B. O paзмepax туpбулeнтныx диффузиoнныx плaмeн вoдopoдa и мeтaнa//B cб. «Пpoцeccы гopeния и пpoблeмы тушeния пoжapoв». Ч. 1, BHИИПO, 1973. C. 38–48. (V.F. Komov, V.C. Reutt, G.G. Shevyakov, K.V. Goloma, Scales of methane and hydrogen turbulent diffusion flames. In: “Processy gorenia I problemy tushenia pozharov”, Pt 1, VNIIPO, 1973, pp. 38–48)

    Google Scholar 

  25. E.S. Fishburne, H.S. Pergament, The dynamics and radiant intensity of large hydrogen flames. Proc. Combust. Inst. 17, 1063–1073 (1978)

    Article  Google Scholar 

  26. V.K. Baev, P.P. Kuznetsov, I.A. Mogil’nyi, P.K. Tret’yakov, V.A. Yasakov, Length of diffusion flames. Combust. Explos. Shock Waves 10(4), 420–426 (1974)

    Article  Google Scholar 

  27. R.W. Bilger, R.E. Beck, Proc. Combust. Inst. 15, 541–552 (1974)

    Article  Google Scholar 

  28. W.R. Hawthorne, D.S. Weddell, H.C. Hottell, Mixing and combustion in turbulent gas jets. Proc. Combust. Inst. 3, 266–288 (1949)

    Google Scholar 

  29. G.A. Lavoie, A.F. Schlader, A scaling study of NO formation in turbulent diffusion flames of hydrogen burning in air. Combust. Sci. Technol. 8, 215 (1974)

    Article  Google Scholar 

  30. G.T. Kalghatgi, Blow-out stability of gaseous jet diffusion flames. Part I: In still air. Combust. Sci. Technol. 26, 233–239 (1981)

    Article  Google Scholar 

  31. G.T. Kalghatgi, Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41, 17–29 (1984)

    Article  Google Scholar 

  32. Гeльфaнд Б.E., Пoпoв O.E., Чaйвaнoв Б.Б. Boдopoд: пapaмeтpы гopeния и взpывa. Mocквa: Физмaтлит, 2008, 288 c. (B.E. Gelfand, O.E. Popov, B.B. Chaivanov, Hydrogen: Parameters of Combustion and Explosion (Fizmatlit, Moscow, 2008), 288 p.)

    Google Scholar 

  33. J. Keller, P. Benard, Hydrogen-Mith busting. International Conference on Hydrogen Safety, San Sebastian, 2007

    Google Scholar 

  34. Y. Wu, Y. Lu, I.S. Al-rachbi, G.T. Kalghati, Prediction of the liftoff,blowout and blowoff stability limits of pure hydrogen and hydrogen/hydrocarbon mixture jet flames. International Conference on Hydrogen Safety, San Sebastian, 2007

    Google Scholar 

  35. T. Mogi, H. Nishida, S. Horiguchi, Flame characteristics of high –pressure gas jet. International Conference on Hydrogen Safety, Pisa, 2005

    Google Scholar 

  36. J.N. Wen, Hydrogen fires. 1st European Summer School on Hydrogen Safety, Belfast, 2006

    Google Scholar 

  37. S. Kikukawa, Risk management approaches to the Japanese regulations of hydrogen supply stations. International Conference on Hydrogen Safety, San Sebastian, 2007

    Google Scholar 

  38. T. Leung, I. Wierzba, The effect of hydrogen addition on biogas non-premixed jet flame stability in co-flowing air stream. Int. J. Hydrog. Energy 33(14), 3856–3862 (2008)

    Article  Google Scholar 

  39. P. Kumar, D.P. Mishra, Effects of bluff-body shape on LPG-H2 jet diffusion flame. Int. J. Hydrog. Energy 33(10), 2578–2585 (2008)

    Article  Google Scholar 

  40. V.K. Baev, V.V. Shumskii, M.I. Yaroslavtsev, Self-ignition of a fuel gas escaping into an oxidizing medium. Combust. Explos. Shock Waves 19(5), 600–605 (1983)

    Article  Google Scholar 

  41. Бaeв B.К., Бузукoв A.A., Tимoшeнкo Б.П. и дp. Caмoвocплaмeнeниe вoдopoдa пpи импульcнoм выcoкoнaпopнoм впpыcкe eгo в вoздуx//B cб. «Cтpуктуpa гaзoфaзныx плaмeн». Hoвocибиpcк: ИTПM CO AH CCCP. 1984, ч. 1. C. 179–188. (V.K. Baev, A.A. Buzukov, B.P. Timoshenko et al., Hydrogen self-ignition at impulse high-pressure injection into air. In: “Struktura Gasofaznyh Plamen”, Novosibirsk: ITPM SO AN SSSR, 1984, Pt. 1, pp. 179–188)

    Google Scholar 

  42. A. Kouchi, K. Takeno, K. Chitose, Dispersion tests on concentration and its fluctuations for 40 Mpa pressurized hydrogen. International Conference on Hydrogen Safety, San Sebastian, 2007

    Google Scholar 

  43. A.G. Gaydon, I.R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Chapman & Hall, London, 1963)

    Google Scholar 

  44. P. Wolanski, S. Wojcicki, Investigation into mechanism of the diffusion ignition of a combustible gas flowing into oxidizing atmosphere. Proc. Combust. Inst. 14, 1217–1223 (1973)

    Google Scholar 

  45. P. Wolanski, Forty years of investigation of diffusion ignition. Paper at 7th international symposium on hazards prevention and mitigation of industrial explosions, St. Petersburg, 2008

    Google Scholar 

  46. V.K. Baev, A.A. Buzukov, V.V. Shumskii, Conditions of self-ignition upon pulsed high-pressure injection of combustible gases into a bounded space. Combust. Explos. Shock Waves 36(3), 283–290 (2000)

    Article  Google Scholar 

  47. F.L. Dryer, M. Chaos, Zh Zhao, J. Stein, J. Alpert, Ch Homer, Spontaneous ignition of pressurized release of hydrogen and natural gas into air. Combust. Sci. Technol. 179, 663–694 (2007)

    Article  Google Scholar 

  48. V.V. Golub, D.I. Baklanov, T.V. Bazenova, M.V. Bragin, S.V. Golovastov, M.F. Ivanov, V.V. Volodin, Shock induced ignition of hydrogen gas during accidental of technical opening of high pressure tank. J. Loss Prev. Process Ind. 20(4), 439–446 (2007)

    Article  Google Scholar 

  49. V.V. Golub, D.I. Baklanov, T.V. Bazenova, S.V. Golovastov, M.F. Ivanov, V.V. Volodin, N.V. Semin, I.N. Laskin, Experimental and numerical investigation of hydrogen gas auto-ignition. International Conference on Hydrogen Safety, San Sebastian, 2007

    Google Scholar 

  50. N. Mogi, D. Kim, K. Shiina, S. Horiguchi, Selfignition and explosion during discharge of high pressure hydrogen. (a) J. Loss Prev. Process Ind. 21(2), 199–204 (2008); (b) International Conference on Hydrogen Safety, Pisa, Italy, 2005; (c) 31st symposium (international) on combustion, WIP Abstracts, The Combustion Institute, Heidelberg, 2008

    Google Scholar 

  51. B.P. Xu, L. El Hima, S. Dembele, J.X. Wen, V.H.Y. Tam, T. Donchev, Numerical study on the spontaneous ignition of pressurized hydrogen release through tube in air. (a) J. Loss Prev. Process Ind. 21(2), 205–213 (2008); (b) International Conference on Hydrogen Safety, San Sebastian, 2007

    Google Scholar 

  52. B.P. Xu, I.P. Zhang, J.X. Wen, S. Dembele, J. Knwatzik, Numerical study of highly under-expanded hydrogen. International Conference on Hydrogen Safety, Pisa, 2005

    Google Scholar 

  53. O.K. Sommersel, D. Bjerketvedt, K. Vaagsaether, T.K. Fannelop, Experiments with release and ignition of hydrogen gas in a 3 m long channel. International Conference on Hydrogen Safety, San Sebastian, 2007

    Google Scholar 

  54. W.G. Houf, D.H. Evans, R.W. Schefer, Analysis of jet flames and unignited jets from unintended release of hydrogen. International Conference on Hydrogen Safety, San Sebastian, 2007

    Google Scholar 

  55. R. Owston, V. Magi, J. Abraham, Interaction of hydrogen flames with walls: influence of wall temperature, pressure, equivalence ratio and diluents. Int. J. Hydrog. Energy 32(12), 2094–2104 (2007)

    Article  Google Scholar 

  56. R.W. Schefer, W.G. Houf, T.C. Williams, B. Bourne, J. Colton, Characterization of high-pressure under-expanded hydrogen jet. Int. J. Hydrog. Energy 32(12), 2981–2983 (2007)

    Article  Google Scholar 

  57. K. Takeno, K. Okabayashi, T. Ichmose, A. Kouchi, T. Nonaka, Phenomena of disperse and explosion of high pressurized hydrogen. International Conference on Hydrogen Safety, Pisa, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gelfand, B.E., Silnikov, M.V., Medvedev, S.P., Khomik, S.V. (2012). Combustion and Explosion Characteristics of Non-premixed and Partially Pre-mixed Mixtures. In: Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25352-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25352-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25351-5

  • Online ISBN: 978-3-642-25352-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics