Combustion and Explosion Characteristics of Non-premixed and Partially Pre-mixed Mixtures

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)


Two significantly different fuel and oxidizer forms are considered while analyzing potentially combustible systems: pre-mixed and non-premixed mixtures. The previous chapters are devoted to combustion modes in pre-mixed mixtures.


Additives Blast wave Diffusion flame Jet Lift-off 


  1. 1.
    J.E. Shepherd, Hydrogen-steam jet-flame facility and experiments. NUREG/CR-3638, SAND84-0060, 1984Google Scholar
  2. 2.
    J.E. Shepherd, Analysis of diffusion flame tests. NUREG/CR-4534, SAND86-0419, 1987Google Scholar
  3. 3.
    J.R. Travis, A heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments. Nucl. Eng. Design 101, 149–166 (1987)CrossRefGoogle Scholar
  4. 4.
    C.K. Chan, A. Guerrero, The structure of horizontal hydrogen-steam diffusion flames, in Proceedings of the OECD/NEA/CSNI Workshop of the Implementation of Hydrogen Mitigation Techniques, AECL-11762, NEA/CSNI/R(96)8, Whiteshell Laboratories, Pinawa, 1997Google Scholar
  5. 5.
    W. Luangdilok, R.J. Hammersley, J. Scobel, Analysis of diffusion flames on the IRWST vents of the Westinghouse AP600 during severe accidents. International Meeting on Advanced Reactors Safety – ARS’97, Orlando, 1–5 June 1997Google Scholar
  6. 6.
    Зeльдoвич Я.Б. К тeopии гopeния нeпepeмeшaнныx гaзoв//ЖTФ, 1949. T. 19, C. 1199–1210 (Y.B. Zeldovich, On the theory of combustion of non-mixed gases. Zh. Tehnich. Fiziki 19, 1199–1210 (1949))Google Scholar
  7. 7.
    D.B. Spalding, A theory of the extinction of diffusion flames. Fuel 22, 22–35 (1954)Google Scholar
  8. 8.
    S.P. Burke, T.E.W. Schumann, Diffusion flames. Ind. Eng. Chem. 20, 998–1004 (1928)CrossRefGoogle Scholar
  9. 9.
    Швaб B.A. Cвязь мeжду тeмпepaтуpными и cкopocтными пoлями гaзoвoгo фaкeлa//B cб. «Иccлeдoвaниe пpoцeccoв гopeния нaтуpaльнoгo тoпливa». Гocэнepгoиздaт, 1948, C. 231–248 (V.A. Shwab, Relation between temperature and velocity fields of gaseous flare. In: “Study of natural fuel combustion processes”, Gosenergoizdat, 1948, pp. 231–248)Google Scholar
  10. 10.
    Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985), p. 597CrossRefGoogle Scholar
  11. 11.
    F.A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, 2nd edn. (Benjamin/Cummings, Menlo Park, 1985)Google Scholar
  12. 12.
    H.G. Im, J.H. Chen, Structure and propagation of triple flames in partially premixed hydrogen-air mixtures. Combust. Flame 119, 436–454 (1999)CrossRefGoogle Scholar
  13. 13.
    P.N. Kioni, B. Rogg, K.N.C. Bray, A. Linan, Flame spread in laminar mixing layers: the triple flame. Combust. Flame 95, 276–290 (1993)CrossRefGoogle Scholar
  14. 14.
    H. Phillips, Flame in a buoyant methane layer. Proc. Combust. Inst. 10, 1277–1283 (1965)Google Scholar
  15. 15.
    H.G. Im, J.H. Chen, Effects of flow strain on triple flame propagation. Combust. Flame 126, 1384–1392 (2001)CrossRefGoogle Scholar
  16. 16.
    J.E. Broadwell, W.J.A. Dahm, M.G. Mungal, Blowout of turbulent flames. Proc. Combust. Inst. 20, 303–310 (1984)Google Scholar
  17. 17.
    L. Muniz, M.G. Mungal, Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111, 16–31 (1997)CrossRefGoogle Scholar
  18. 18.
    L. Vanquickenborne, A. van Tiggelen, The stabilization mechanism of lifted diffusion flames. Combust. Flame 10, 59–69 (1966)CrossRefGoogle Scholar
  19. 19.
    W.M. Pitts, Assessment of theories for the behavior and blowout of lifted turbulent jet diffusion flames. Proc. Combust. Inst. 22, 809–816 (1988)Google Scholar
  20. 20.
    N. Peters, F.A. Williams, Lift-off characteristics of turbulent jet diffusion flames. AIAA J 21, 423–429 (1983)zbMATHCrossRefGoogle Scholar
  21. 21.
    C.M. Muller, H. Breitbach, N. Peters, Partially premixed turbulent flame propagation in jet flames. Proc. Combust. Inst. 25, 1099–1016 (1994)Google Scholar
  22. 22.
    V.K. Baev, V.A. Yasakov, Influence of buoyant forces on the length of diffuse flames. Combust. Explos. Shock Waves 10(6), 752–756 (1974)CrossRefGoogle Scholar
  23. 23.
    Y.M. Annushkin, E.D. Sverdlov, Stability of submerged flames in subsonic and underexpanded supersonic gas-fuel streams. Combust. Explos. Shock Waves 14(5), 597–605 (1978)CrossRefGoogle Scholar
  24. 24.
    Кoмoв B.Ф., Peутт B.Ч., Шeвякoв Г.Г., Гoлoмa К.B. O paзмepax туpбулeнтныx диффузиoнныx плaмeн вoдopoдa и мeтaнa//B cб. «Пpoцeccы гopeния и пpoблeмы тушeния пoжapoв». Ч. 1, BHИИПO, 1973. C. 38–48. (V.F. Komov, V.C. Reutt, G.G. Shevyakov, K.V. Goloma, Scales of methane and hydrogen turbulent diffusion flames. In: “Processy gorenia I problemy tushenia pozharov”, Pt 1, VNIIPO, 1973, pp. 38–48)Google Scholar
  25. 25.
    E.S. Fishburne, H.S. Pergament, The dynamics and radiant intensity of large hydrogen flames. Proc. Combust. Inst. 17, 1063–1073 (1978)Google Scholar
  26. 26.
    V.K. Baev, P.P. Kuznetsov, I.A. Mogil’nyi, P.K. Tret’yakov, V.A. Yasakov, Length of diffusion flames. Combust. Explos. Shock Waves 10(4), 420–426 (1974)CrossRefGoogle Scholar
  27. 27.
    R.W. Bilger, R.E. Beck, Proc. Combust. Inst. 15, 541–552 (1974)Google Scholar
  28. 28.
    W.R. Hawthorne, D.S. Weddell, H.C. Hottell, Mixing and combustion in turbulent gas jets. Proc. Combust. Inst. 3, 266–288 (1949)Google Scholar
  29. 29.
    G.A. Lavoie, A.F. Schlader, A scaling study of NO formation in turbulent diffusion flames of hydrogen burning in air. Combust. Sci. Technol. 8, 215 (1974)CrossRefGoogle Scholar
  30. 30.
    G.T. Kalghatgi, Blow-out stability of gaseous jet diffusion flames. Part I: In still air. Combust. Sci. Technol. 26, 233–239 (1981)CrossRefGoogle Scholar
  31. 31.
    G.T. Kalghatgi, Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41, 17–29 (1984)CrossRefGoogle Scholar
  32. 32.
    Гeльфaнд Б.E., Пoпoв O.E., Чaйвaнoв Б.Б. Boдopoд: пapaмeтpы гopeния и взpывa. Mocквa: Физмaтлит, 2008, 288 c. (B.E. Gelfand, O.E. Popov, B.B. Chaivanov, Hydrogen: Parameters of Combustion and Explosion (Fizmatlit, Moscow, 2008), 288 p.)Google Scholar
  33. 33.
    J. Keller, P. Benard, Hydrogen-Mith busting. International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  34. 34.
    Y. Wu, Y. Lu, I.S. Al-rachbi, G.T. Kalghati, Prediction of the liftoff,blowout and blowoff stability limits of pure hydrogen and hydrogen/hydrocarbon mixture jet flames. International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  35. 35.
    T. Mogi, H. Nishida, S. Horiguchi, Flame characteristics of high –pressure gas jet. International Conference on Hydrogen Safety, Pisa, 2005Google Scholar
  36. 36.
    J.N. Wen, Hydrogen fires. 1st European Summer School on Hydrogen Safety, Belfast, 2006Google Scholar
  37. 37.
    S. Kikukawa, Risk management approaches to the Japanese regulations of hydrogen supply stations. International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  38. 38.
    T. Leung, I. Wierzba, The effect of hydrogen addition on biogas non-premixed jet flame stability in co-flowing air stream. Int. J. Hydrog. Energy 33(14), 3856–3862 (2008)CrossRefGoogle Scholar
  39. 39.
    P. Kumar, D.P. Mishra, Effects of bluff-body shape on LPG-H2 jet diffusion flame. Int. J. Hydrog. Energy 33(10), 2578–2585 (2008)CrossRefGoogle Scholar
  40. 40.
    V.K. Baev, V.V. Shumskii, M.I. Yaroslavtsev, Self-ignition of a fuel gas escaping into an oxidizing medium. Combust. Explos. Shock Waves 19(5), 600–605 (1983)CrossRefGoogle Scholar
  41. 41.
    Бaeв B.К., Бузукoв A.A., Tимoшeнкo Б.П. и дp. Caмoвocплaмeнeниe вoдopoдa пpи импульcнoм выcoкoнaпopнoм впpыcкe eгo в вoздуx//B cб. «Cтpуктуpa гaзoфaзныx плaмeн». Hoвocибиpcк: ИTПM CO AH CCCP. 1984, ч. 1. C. 179–188. (V.K. Baev, A.A. Buzukov, B.P. Timoshenko et al., Hydrogen self-ignition at impulse high-pressure injection into air. In: “Struktura Gasofaznyh Plamen”, Novosibirsk: ITPM SO AN SSSR, 1984, Pt. 1, pp. 179–188)Google Scholar
  42. 42.
    A. Kouchi, K. Takeno, K. Chitose, Dispersion tests on concentration and its fluctuations for 40 Mpa pressurized hydrogen. International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  43. 43.
    A.G. Gaydon, I.R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Chapman & Hall, London, 1963)Google Scholar
  44. 44.
    P. Wolanski, S. Wojcicki, Investigation into mechanism of the diffusion ignition of a combustible gas flowing into oxidizing atmosphere. Proc. Combust. Inst. 14, 1217–1223 (1973)Google Scholar
  45. 45.
    P. Wolanski, Forty years of investigation of diffusion ignition. Paper at 7th international symposium on hazards prevention and mitigation of industrial explosions, St. Petersburg, 2008Google Scholar
  46. 46.
    V.K. Baev, A.A. Buzukov, V.V. Shumskii, Conditions of self-ignition upon pulsed high-pressure injection of combustible gases into a bounded space. Combust. Explos. Shock Waves 36(3), 283–290 (2000)CrossRefGoogle Scholar
  47. 47.
    F.L. Dryer, M. Chaos, Zh Zhao, J. Stein, J. Alpert, Ch Homer, Spontaneous ignition of pressurized release of hydrogen and natural gas into air. Combust. Sci. Technol. 179, 663–694 (2007)CrossRefGoogle Scholar
  48. 48.
    V.V. Golub, D.I. Baklanov, T.V. Bazenova, M.V. Bragin, S.V. Golovastov, M.F. Ivanov, V.V. Volodin, Shock induced ignition of hydrogen gas during accidental of technical opening of high pressure tank. J. Loss Prev. Process Ind. 20(4), 439–446 (2007)CrossRefGoogle Scholar
  49. 49.
    V.V. Golub, D.I. Baklanov, T.V. Bazenova, S.V. Golovastov, M.F. Ivanov, V.V. Volodin, N.V. Semin, I.N. Laskin, Experimental and numerical investigation of hydrogen gas auto-ignition. International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  50. 50.
    N. Mogi, D. Kim, K. Shiina, S. Horiguchi, Selfignition and explosion during discharge of high pressure hydrogen. (a) J. Loss Prev. Process Ind. 21(2), 199–204 (2008); (b) International Conference on Hydrogen Safety, Pisa, Italy, 2005; (c) 31st symposium (international) on combustion, WIP Abstracts, The Combustion Institute, Heidelberg, 2008Google Scholar
  51. 51.
    B.P. Xu, L. El Hima, S. Dembele, J.X. Wen, V.H.Y. Tam, T. Donchev, Numerical study on the spontaneous ignition of pressurized hydrogen release through tube in air. (a) J. Loss Prev. Process Ind. 21(2), 205–213 (2008); (b) International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  52. 52.
    B.P. Xu, I.P. Zhang, J.X. Wen, S. Dembele, J. Knwatzik, Numerical study of highly under-expanded hydrogen. International Conference on Hydrogen Safety, Pisa, 2005Google Scholar
  53. 53.
    O.K. Sommersel, D. Bjerketvedt, K. Vaagsaether, T.K. Fannelop, Experiments with release and ignition of hydrogen gas in a 3 m long channel. International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  54. 54.
    W.G. Houf, D.H. Evans, R.W. Schefer, Analysis of jet flames and unignited jets from unintended release of hydrogen. International Conference on Hydrogen Safety, San Sebastian, 2007Google Scholar
  55. 55.
    R. Owston, V. Magi, J. Abraham, Interaction of hydrogen flames with walls: influence of wall temperature, pressure, equivalence ratio and diluents. Int. J. Hydrog. Energy 32(12), 2094–2104 (2007)CrossRefGoogle Scholar
  56. 56.
    R.W. Schefer, W.G. Houf, T.C. Williams, B. Bourne, J. Colton, Characterization of high-pressure under-expanded hydrogen jet. Int. J. Hydrog. Energy 32(12), 2981–2983 (2007)CrossRefGoogle Scholar
  57. 57.
    K. Takeno, K. Okabayashi, T. Ichmose, A. Kouchi, T. Nonaka, Phenomena of disperse and explosion of high pressurized hydrogen. International Conference on Hydrogen Safety, Pisa, 2005Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations