Fundamental Combustion Characteristics of Hydrogenous Mixtures

  • Boris E. Gelfand
  • Mikhail V. Silnikov
  • Sergey P. Medvedev
  • Sergey V. Khomik
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)


A laminar flame velocity is one of the fundamental characteristics of premixed combustible gas reactivity. It specifies an amount of mixture reacting across a unit flame front area per unit time. According to the classical definition, a laminar flame (combustion) velocity is the expansion rate of a flat one-dimensional flame front in the direction normal to the wave surface with respect to the unburned gas [1].


Combustion Laminar flame Turbulent flame 


  1. 1.
    Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985), p. 597CrossRefGoogle Scholar
  2. 2.
    B. Lewis, G. Von Elbe, Combustion, Flames and Explosion of Gases, 3rd edn. (Academic, Orlando, 1987), p. 739Google Scholar
  3. 3.
    G.H. Markstein, Experimental and theoretical studies of flame front stability. J. Aeronaut. Sci. 18, 199–209 (1951)Google Scholar
  4. 4.
    G.H. Markstein, Instability phenomena in combustion waves. Proc. Combust. Inst. 4, 44–59 (1953)Google Scholar
  5. 5.
    F.A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, 2nd edn. (Benjamin Cummings, Menlo Park, 1985)Google Scholar
  6. 6.
    Y.Y. Zhang, J.H. Wu, S. Ishizuka, Hydrogen addition effect on laminar burning velocity, flame temperature and flame stability of a planar and curved CH4 + H2 + Air premixed flame. Int. J. Hydrogen Energy 34(2), 519–527 (2009)CrossRefGoogle Scholar
  7. 7.
    P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11, 1–59 (1985)CrossRefGoogle Scholar
  8. 8.
    C.K. Law, C.J. Sung, Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459–505 (2000)CrossRefGoogle Scholar
  9. 9.
    O.C. Kwon, G.M. Faeth, Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions. Combust. Flame 124, 590–610 (2001)CrossRefGoogle Scholar
  10. 10.
    J.K. Bechtold, M. Matalon, Effects of stoichiometry on stretched premixed flames. Combust. Flame 119, 217–232 (1999)CrossRefGoogle Scholar
  11. 11.
    J.K. Bechtold, M. Matalon, The dependence of the Markstein length on stoichiometry. Combust. Flame 127, 1906–1913 (2001)CrossRefGoogle Scholar
  12. 12.
    K.T. Aung, M.I. Hassan, G.M. Faeth, Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combust. Flame 109, 1–24 (1997)CrossRefGoogle Scholar
  13. 13.
    P. Clavin, G. Joulin, Flamelet library for turbulent wrinkled flames. Lecture notes in engineering: turbulent reactive flows, vol. 40, 1989, pp. 213–239Google Scholar
  14. 14.
    S.D. Lee, D.H. Chung, S.H. Chung, Local equilibrium temperature as a measure of stretch and preferential diffusion effects in counterflow H2/air premixed flames. Proc. Combust. Inst. 27, 579–585 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    M.J. Brown, I.C. McLean, D.B. Smith, S.C. Taylor, Markstein lengths of CO/H2/air flames, using expanding spherical flames. Proc. Combust. Inst. 26, 875–881 (1996)Google Scholar
  16. 16.
    C.J. Sun, C.J. Sung, L. He, C.K. Law, Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters. Combust. Flame 118, 108–128 (1999)CrossRefGoogle Scholar
  17. 17.
    G.I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech. 15, 179–199 (1983)CrossRefGoogle Scholar
  18. 18.
    Бapeнблaтт Г.И., Зeльдoвич Я.Б., Иcтpaтoв A.Г. O диффузиoннo-тeплoвoй уcтoйчивocти лaминapнoгo плaмeни//ПMTФ, 1962, № 4. C. 21–26 (G.I. Barenblatt, Ya.B. Zeldovich, A.G. Istratov, On diffusion-thermal stability of laminar flame. Zh. Prikl. Mehan. Tehn. Fiziki 4, 21–26 (1962)Google Scholar
  19. 19.
    A.G. Istratov, V.B. Librovich, On the stability of propagation of spherical flames. J. Appl.Mech.Tech.Phys. 7(1), 43–50 (1966)CrossRefGoogle Scholar
  20. 20.
    M.L. Frankel, G.I. Sivashinsky, Fingering instability in nonadiabatic low-Lewis-number flames. Phys. Rev. E 52, 6154–6158 (1995)CrossRefGoogle Scholar
  21. 21.
    O.C. Kwon, G. Rozenchan, C.K. Law, Cellular instabilities and self-acceleration of outwardly propagating spherical flames. Proc. Combust. Inst. 29, 1775–1783 (2002)CrossRefGoogle Scholar
  22. 22.
    L.Z. Ma, J. Chomiak, Asymptotical flame shapes and speeds of hydrodynamically unstable laminar flames. Proc. Combust. Inst. 27, 545–553 (1998)Google Scholar
  23. 23.
    K.L. Pan, J. Qian, C.K. Law, W. Shy, The role of hydrodynamic instability in flame-vortex interaction. Proc. Combust. Inst. 29, 1695–1704 (2002)CrossRefGoogle Scholar
  24. 24.
    R. Addabbo, J.K. Bechtold, M. Matalon, Wrinkling of spherically expanding flames. Proc. Combust. Inst. 29, 1527–1535 (2002)CrossRefGoogle Scholar
  25. 25.
    R.C. Aldredge, B. Zuo, Flame acceleration associated with the Darrieus-Landau instability. Combust. Flame 127, 2091–2101 (2001)CrossRefGoogle Scholar
  26. 26.
    S.S. Minaev, E.A. Pirogov, O.V. Sharypov, A nonlinear model for hydrodynamic instability of an expanding flame. Combust. Explo. Shock Waves 32(5), 481–488 (1996)CrossRefGoogle Scholar
  27. 27.
    F.C. Gouldin, An application of fractals to modeling premixed turbulent flames. Combust. Flame 68, 249–266 (1987)CrossRefGoogle Scholar
  28. 28.
    M. Murayama, T. Takeno, Fractal-like character of flamelets in turbulent premixed combustion. Proc. Combust. Inst. 22, 551–559 (1988)Google Scholar
  29. 29.
    Yu.A. Gostintsev, A.G. Istratov, Yu.V. Shulenin, Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explo. Shock Waves 24(5), 563–569 (1988)CrossRefGoogle Scholar
  30. 30.
    Гocтинцeв Ю.A., Иcтpaтoв A.Г., Фopтoв B.E. O фpaктaльнoй cтpуктуpe туpбулeнтнoгo cфepичecкoгo плaмeни//Дoклaды PAH, 1997. T. 353, № 1. C. 55–56 (Yu.A. Gostintsev, A.G. Istratov, V.E. Fortov, On fractal structure of turbulent spherical flame. Doklady RAN 353(1) 55–56 (1997))Google Scholar
  31. 31.
    Гocтинцeв Ю.A., Иcтpaтoв A.Г., Кидин H.И., Фopтoв B.E. Aвтoтуpбулизaция гaзoвыx плaмeн. Teopeтичecкиe тpaктoвки//TBT, 1999. T. 37, p. 633–637 (Yu.A. Gostintsev, A.G. Istratov, N.I. Kidin, Auto-turbulization of gaseous flames. Theoretical treatments. Teplofiz. Visokih Temper. 37, 633–637 (1999))Google Scholar
  32. 32.
    Гocтинцeв Ю.A., Иcтpaтoв A.Г., Кидин H.И., Фopтoв B.E. Aвтoтуpбулизaция гaзoвыx плaмeн. Aнaлиз экcпepимeнтaльныx peзультaтoв//TBT, 1999. V. 37, p. 306–312 (Yu.A. Gostintsev, A.G. Istratov, N.I. Kidin, V.E. Fortov, Auto-turbulization of gaseous flames. Analysis of experimental data. Teplofiz. Visokih Temper. 37, 306–312 (1999))Google Scholar
  33. 33.
    V.V. Bychkov, M.A. Liberman, Stability and the fractal structure of a spherical flame in a self-similar regime. Phys. Rev. Lett. 76, 2814–2817 (1996)CrossRefGoogle Scholar
  34. 34.
    J. Manton, G. von Elbe, B. Lewis, Nonisotropic propagation of combustion waves in explosive gas mixtures and the development of cellular flames. J. Chem. Phys. 20, 153–157 (1952)CrossRefGoogle Scholar
  35. 35.
    V.P. Karpov, Cellular flame structure under conditions of a constant-volume bomb and its relationship with vibratory combustion. Combust. Explos. Shock Waves 1(3), 39–42 (1965)CrossRefGoogle Scholar
  36. 36.
    K.I. Shchelkin, Intensification of weak shock waves by a cellular flame. Combust. Explos. Shock Waves 2(2), 20–21 (1966)CrossRefGoogle Scholar
  37. 37.
    G.I. Sivashinsky, Diffusion-thermal theory of cellular flames. Combust. Sci. Technol. 15, 137–145 (1977)CrossRefGoogle Scholar
  38. 38.
    T. Mitani, F.A. Williams, Cellular hydrogen flames. Arch. Combust. 1, 61–67 (1981)Google Scholar
  39. 39.
    S. Kadowaki, Numerical study on the formation of cellular premixed flames at high Lewis numbers. Phys. Fluids 12, 2352–2359 (2000)CrossRefGoogle Scholar
  40. 40.
    R.G. Abdel-Gayed, D. Bradley, M. Lawes, Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A414, 389–413 (1987)Google Scholar
  41. 41.
    R.G. Abdel-Gayed, D. Bradley, F.K. Lung, Combustion regimes and the straining of turbulent premixed flames. Combust. Flame 76, 213–218 (1989)CrossRefGoogle Scholar
  42. 42.
    D. Bradley, A.K.S. Lau, M. Laws, Flame stretch rate as a determinant of turbulent burning velocity. Philos. Trans. R. Soc. Lond. A338, 359–387 (1992)Google Scholar
  43. 43.
    D. Bradley, How fast can we burn? Proc. Combust. Inst. 24, 247–262 (1992)Google Scholar
  44. 44.
    K.J. Al-Khishali, D. Bradley, S.F. Hall, Turbulent combustion of near-limit hydrogen-air mixtures. Combust. Flame 54, 61–70 (1983)CrossRefGoogle Scholar
  45. 45.
    R.G. Abdel-Gayed, D. Bradley, M. Lawes, F.K. Lung, Premixed turbulent burning during explosions. Proc. Combust. Inst. 21, 497–504 (1986)Google Scholar
  46. 46.
    N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000), p. 320zbMATHCrossRefGoogle Scholar
  47. 47.
    F.A. Williams, Progress in knowledge of flamelet structure and extinction. Prog. Energy Combust. Sci. 26, 657–682 (2000)CrossRefGoogle Scholar
  48. 48.
    R. Borghi, On the structure and morphology of turbulent premixed flames, in Recent Advances in Aerospace Science, ed. by C. Bruno, S. Casci (Pergamon, London, 1984), pp. 117–138Google Scholar
  49. 49.
    V. Schroeder, K. Holtappel, Explosion characteristics of hydrogen -air and hydrogen-oxygen mixtures at elevated pressure. International Conference on Hydrogen Safety, Pisa, 2005Google Scholar
  50. 50.
    G. Dixon-Levis, Kinetic mechanism, structure and properties of premixed flames in H2 + N2 + O2 mixtures. Philos. Trans. R. Soc. Lond. A292(1388), 45–99 (1979)Google Scholar
  51. 51.
    K.S. Raman, Laminar burning velocities of lean hydrogen-air mixtures. EDL report FM97-15.GALCIT, 1998Google Scholar
  52. 52.
    C.L. Tang, Z.H. Huang, C. Jin, J.J. He, J.H. Wang, X.B. Wang, H.Y. Miao, Explosion characteristics of H2 + N2 + Air mixtures at elevated pressures and temperatures. Int. J. Hydrogen Energy 34(2), 554–561 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Boris E. Gelfand
    • 1
  • Mikhail V. Silnikov
    • 2
  • Sergey P. Medvedev
    • 1
  • Sergey V. Khomik
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics RASMoscowRussia
  2. 2.Special Materials Corp.Saint PetersburgRussia

Personalised recommendations