Advertisement

Dynamic Compression of Curve-Based Point Cloud

  • Ismael Daribo
  • Ryo Furukawa
  • Ryusuke Sagawa
  • Hiroshi Kawasaki
  • Shinsaku Hiura
  • Naoki Asada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7088)

Abstract

With the increasing demands for highly detailed 3D data, dynamic scanning systems are capable of producing 3D+t (a.k.a. 4D) spatio-temporal models with millions of points recently. As a consequence, effective 4D geometry compression schemes are required to face the need to store/transmit the huge amount of data, in addition to classical static 3D data. In this paper, we propose a 4D spatio-temporal point cloud encoder via a curve-based representation of the point cloud, particularly well-suited for dynamic structured-light-based scanning systems, wherein a grid pattern is projected onto the surface object. The object surface is then naturally sampled in a series of curves, due to the grid pattern. This motivates our choice to leverage a curve-based representation to remove the spatial and temporal correlation of the sampled point along the scanning directions through a competitive-based predictive encoder that includes different spatio-temporal prediction modes. Experimental results show the significant gain obtained with the proposed method.

Keywords

Point cloud compression curve-based dynamic 4D 3D+t grid pattern 

References

  1. 1.
    Furukawa, R., Sagawa, R., Kawasaki, H., Sakashita, K., Yagi, Y., Asada, N.: One-shot entire shape acquisition method using multiple projectors and cameras. In: Proc. of the Pacific-Rim Symposium Image and Video Technology (PSIVT), Singapore, pp. 107–114 (December 2010)Google Scholar
  2. 2.
    Batlle, J., Mouaddib, E.M., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern Recognition 31, 963–982 (1998)CrossRefGoogle Scholar
  3. 3.
    Kawasaki, H., Furukawa, R., Sagawa, R., Yagi, Y.: Dynamic scene shape reconstruction using a single structured light pattern. In: Proc. of the IEEE Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, pp. 1–8 (June 2008)Google Scholar
  4. 4.
    Sagawa, R., Ota, Y., Yagi, Y., Furukawa, R., Asada, N., Kawasaki, H.: Dense 3D reconstruction method using a single pattern for fast moving object. In: Proc. of the IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 1779–1786 (September 2009)Google Scholar
  5. 5.
    Alliez, P., Gotsman, C.: Recent advances in compression of 3D meshes. In: Proc. of the Advances in Multiresolution for Geometric Modelling, pp. 3–26 (2003)Google Scholar
  6. 6.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9(1), 3–15 (2003)CrossRefGoogle Scholar
  7. 7.
    Hubo, E., Mertens, T., Haber, T., Bekaert, P.: Self-similarity-based compression of point clouds, with application to ray tracing. In: Proc. of the IEEE Eurographics Symposium on Point-Based Graphics, pp. 129–137. Eurographics Association (2007)Google Scholar
  8. 8.
    Gumhold, S., Kami, Z., Isenburg, M., Seidel, H.-P.: Predictive point-cloud compression. In: Proc. of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). ACM, USA (2005)Google Scholar
  9. 9.
    Merry, B., Marais, P., Gain, J.: Compression of dense and regular point clouds. In: Proc. of the Computer graphics, Virtual Reality, Visualisation and Interaction in Africa (AFRIGRAPH), pp. 15–20. ACM (2006)Google Scholar
  10. 10.
    Peng, J., Kuo, C.-C.J.: Geometry-guided progressive lossless 3d mesh coding with octree (OT) decomposition. ACM Transaction on Graphics 24, 609–616 (2005), http://doi.acm.org/10.1145/1073204.1073237 CrossRefGoogle Scholar
  11. 11.
    Schnabel, R., Klein, R.: Octree-based point-cloud compression. In: Botsch, M., Chen, B. (eds.) Proc. of the IEEE Eurographics Symposium on Point-Based Graphics. Eurographics (July 2006)Google Scholar
  12. 12.
    Taubin, G., Rossignac, J.: Geometric compression through topological surgery. ACM Transaction on Graphics 17, 84–115 (1998)CrossRefGoogle Scholar
  13. 13.
    Calabi, E., Olver, P., Tannenbaum, C.S.A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. International Journal of Computer Vision 26, 107–135 (1998)CrossRefGoogle Scholar
  14. 14.
    Boutin, M.: Numerically invariant signature curves. International Journal of Computer Vision 40(3), 235–248 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ismael Daribo
    • 1
  • Ryo Furukawa
    • 1
  • Ryusuke Sagawa
    • 2
  • Hiroshi Kawasaki
    • 3
  • Shinsaku Hiura
    • 1
  • Naoki Asada
    • 1
  1. 1.Faculty of Information SciencesHiroshima City UniversityHiroshimaJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  3. 3.Faculty of EngineeringKagoshima UniversityKagoshimaJapan

Personalised recommendations