A Key Derivation Scheme for Hierarchical Access Control to JPEG 2000 Coded Images

  • Shoko Imaizumi
  • Masaaki Fujiyoshi
  • Hitoshi Kiya
  • Naokazu Aoki
  • Hiroyuki Kobayashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7088)


This paper proposes a key derivation scheme to control access of JPEG 2000 (JP2) coded images, which consist of hierarchical scalability such as SNR, resolution levels, and so on. The proposed scheme simultaneously controls access to each level of scalability. The proposed scheme derives keys through hash chains, and each JP2 packet is enciphered with each individual key. By introducing combinations of a cyclic shift and a hash function, the proposed scheme manages only a single key for a JP2 image; whereas the conventional access control schemes having the above mentioned features manage multiple keys. The single managed key is not delivered to any user. The proposed scheme is also resilient to collusion attacks. Performance analysis shows the effectiveness of the proposed scheme.


JPEG 2000 access control key derivation hash chain cyclic shift 


  1. 1.
    Xie, D., Kuo, C.C.J.: Multimedia data encryption via random rotation in partitioned bit streams. In: Proc. IEEE ISCAS, pp. 5533–5536 (2005)Google Scholar
  2. 2.
    Zhang, Z., Sun, Q., Wong, W.C., Apostolopoulos, J., Wee, S.: Rate-distortion-authentication optimized streaming of authenticated video. IEEE Trans. Circuits Syst. for Video Technol. 17, 544–557 (2007)CrossRefGoogle Scholar
  3. 3.
    Grosbois, R., Gerbelot, P., Ebrahimi, T.: Authentication and access control in the JPEG 2000 compressed domain. In: Proc. SPIE, vol. 4472, pp. 95–104 (2001)Google Scholar
  4. 4.
    Haggag, A., Ghoneim, M., Lu, J., Yahagi, T.: Progressive encryption and controlled access scheme for JPEG 2000 encoded images. In: Proc. IEEE ISPACS, pp. 895–898 (2006)Google Scholar
  5. 5.
    Shahid, Z., Chaumont, M., Puech, W.: Selective and scalable encryption of enhancement layers for dyadic scalable H.264/AVC by scrambling of scan patterns. In: Proc. IEEE ICIP, pp. 1273–1276 (2009)Google Scholar
  6. 6.
    Won, Y.G., Bae, T.M., Ro, Y.M.: Scalable Protection and Access Control in Full Scalable Video Coding. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 407–421. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Joye, M., Yen, S.M.: One-Way Cross-Trees and Their Applications. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 346–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Wu, Y., Ma, D., Deng, R.H.: Progressive protection of JPEG 2000 codestreams. In: Proc. IEEE ICIP, pp. 3447–3450 (2004)Google Scholar
  9. 9.
    Imaizumi, S., Fujiyoshi, M., Kiya, H.: Efficient collusion attack-free access control for multidimensionally hierarchical scalability content. In: Proc. IEEE ISCAS, pp. 505–508 (2009)Google Scholar
  10. 10.
    Imaizumi, S., Fujiyoshi, M., Abe, Y., Kiya, H.: Collusion attack-resilient hierarchical encryption of JPEG 2000 codestreams with scalable access control. In: Proc. IEEE ICIP, pp. II-137–II-140 (2007)Google Scholar
  11. 11.
    Information technology — JPEG 2000 image coding system – Part 1: Core coding system. ISO/IEC IS–15444–1 (2004)Google Scholar
  12. 12.
    Information technology — JPEG 2000 image coding system – Part 8: Secure JPEG 2000. ISO/IEC IS–15444–8 (2007)Google Scholar
  13. 13.
    Lamport, L.: Password authentication with insecure communication. Communications of the ACM 24(11), 770–772 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shoko Imaizumi
    • 1
  • Masaaki Fujiyoshi
    • 2
  • Hitoshi Kiya
    • 2
  • Naokazu Aoki
    • 1
  • Hiroyuki Kobayashi
    • 1
  1. 1.Graduate School of Advanced Integration ScienceChiba UniversityChiba-shiJapan
  2. 2.Dept. of Information and Communication SystemsTokyo Metropolitan UniversityHino-shiJapan

Personalised recommendations