Skip to main content

Temperature Effect

  • Chapter
  • First Online:
Computational Viscoelasticity

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

  • 2671 Accesses

Abstract

The viscoelastic constitutive relations presented so far were developed under the hypothesis of isothermal conditions. However, most viscoelastic materials, particularly polymers, have temperature dependent constitutive relations. The mechanisms responsible for these thermal effects have micro-structural origin and are, consequently, complex. In this chapter we present a brief description on temperature effects on the linear viscoelasticity behavior of polymers and concrete and a simplified formulation that is adequate for the so called thermo-rheologically simple materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Arthananari, C.W. Yu, Creep of concrete under uniaxial and biaxial stresses at elevated temperatures. Mag. Concr. Res. 19(60), 149ā€“156 (1967)

    ArticleĀ  Google ScholarĀ 

  2. O.R. Barani, D. Mostofinejaad, M.M. Saadatpour, M. Shekarchi, Concrete basic creep prediction based on timeā€“temperature equivalence relation and short-term tests. Arab. J. Sci. Eng. 35(2B), 105ā€“121 (2010)

    Google ScholarĀ 

  3. E.J. Barbero, Prediction of long-term creep of composites from doubly-shifted polymer creep data. J. Compos. Mater. 43(19), 2109ā€“2124 (2009)

    ArticleĀ  Google ScholarĀ 

  4. Z.P. Bazant, M.F. Kaplan, Concrete at High Temperatures: Material Properties and Mathematical Models (Longman Group Limited, Longman House, Burnt Mill, Harlow, 1996)

    Google ScholarĀ 

  5. Z.P. Bažant, J.K. Kim, Improved prediction model for time-dependent deformations of concrete: part 2ā€”basic creep. Mater. Struct. 24, 409ā€“421 (1991)

    ArticleĀ  Google ScholarĀ 

  6. Z.P. Bažant, J.K. Kim, Improved prediction model for time-dependent deformations of concrete: part 4ā€”temperature effects. Mater. Struct. 25, 84ā€“94 (1992)

    ArticleĀ  Google ScholarĀ 

  7. H.F. Brinson, L.C. Brinson, Polymer Engineering Science and viscoelasticity: An Introduction (Springer, New York, 2008)

    BookĀ  Google ScholarĀ 

  8. W. Callister Jr, Materials Science and Engineering: An Introduction (Wiley, New York, 2003)

    Google ScholarĀ 

  9. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York, 1980)

    Google ScholarĀ 

  10. W.N. Findley, J.S. Lai, K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials (Dover Publications Inc., New York, 1989)

    Google ScholarĀ 

  11. E.T.J. Klompen, L.E. Govaert, Nonlinear viscoelastic behaviour of thermorheologically complex materials. Mech. Time Depend. Mater. 3, 49ā€“69 (1999)

    ArticleĀ  Google ScholarĀ 

  12. R.S. Lakes, Viscoelastic Solids (CRC Press LLC, Boca Raton, 1999)

    Google ScholarĀ 

  13. J.C. Marechal, Creep of concrete as a function of temperature. In: International Seminar on Concrete for Nuclear Reactors, ACI Special Publication No. 34, vol. 1, American Concrete Institute, Detroit, 547ā€“564 (1972)

    Google ScholarĀ 

  14. L.W. Morland, E.H. Lee, Stress analysis for linear viscoelastic materials with temperature variation. Trans. Soc. Rheol. 4, 223 (1960)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. R. Muki, E. Sternberg, On transient thermal stresses in viscoelastic materials with temperature-dependent properties. J. Appl. Mech. 28, 193ā€“207 (1961)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. D.J. Plazek, Temperature dependence of the viscoelastic behavior of polysterene. J. Phys. Chem. 69, 3480ā€“3487 (1965)

    ArticleĀ  Google ScholarĀ 

  17. D.J. Plazek, Oh, thermorheologically simplicity, wherefore art thou? J. Rheol. 40, 987ā€“1014 (1996)

    ArticleĀ  Google ScholarĀ 

  18. F. Schwarzl, A.J. Starveman, Time-temperature dependent of linear viscoelastic behavior. J. Appl. Phys. 23, 838ā€“843 (1952)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  19. M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Temp. Dependence Relax. Mech. 77, 3701ā€“3707 (1955) (Contribution from the Department of Chemistry, University of Wisconsin)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severino P. C. Marques .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 The Authors

About this chapter

Cite this chapter

Marques, S.P.C., Creus, G.J. (2012). Temperature Effect. In: Computational Viscoelasticity. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25311-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25311-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25310-2

  • Online ISBN: 978-3-642-25311-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics