Skip to main content

How to Redesign the Body Pattern of an Organism

  • Chapter
  • First Online:
  • 661 Accesses

Abstract

The combination of the study of embryonic development with a sophisticated genetic technology has led to the discovery of the molecular cascades that take place between DNA and the formation of an adult organism.

It has been known for over 100 years that the antennae of an insect can be transformed into a foot, and legs can be modified into wings, but these genetic events remained curiosities.

The discovery of homeobox genes, that determine the body plan of an animal and of a plant, changed radically this situation. Eight-legged and four-winged flies were produced and eyes were formed on wings and wings on eyes. Other experiments revealed the great importance of eye genes in development indicating the primary role of the eye in shaping body construction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bachiller D et al (1994) Conservation of a functional hierarchy between mammalian and insect Hox/Hom genes. EMBO J 13:1930–41

    PubMed  CAS  Google Scholar 

  • Bateson W (1894) Materials for the study of variation, treated with special regard to discontinuities in the origin of species. Macmillan, New York

    Book  Google Scholar 

  • Bender W (2008) MicroRNAs in the Drosophila bithorax complex. Genes Dev 22:14–19

    Article  PubMed  CAS  Google Scholar 

  • Bender W et al (1983) Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221:23–29

    Article  PubMed  CAS  Google Scholar 

  • Boncinelli E et al (1988) Organization of human homeobox genes. Hum Reprod 3:880–886

    PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Callaerts P et al (1997) Pax-6 in development and evolution. Annu Rev Neurosci 20:483–532

    Article  PubMed  CAS  Google Scholar 

  • Callaerts P et al (2002) HOX genes in the sepiolid squid Euprymna scolopes: implications for the evolution of complex body plans. Proc Natl Acad Sci USA 99:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Carrasco AE et al (1984) Cloning of an X. laevis gene expressed during early embryogenesis that codes for a peptide region homologous to Drosophila homeotic genes. Cell 37:409–414

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez J, Holland PW (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370:563–566

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ (1998) Master control genes in development and evolution: the homeobox story. Yale University Press, New Haven

    Google Scholar 

  • Gehring WJ et al (2009) Evolution of the Hox gene complex from an evolutionary ground state. Curr Top Dev Biol 88:35–61

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2000) Developmental biology. Sinauer Associates Publ., Sunderland

    Google Scholar 

  • Hafen E et al (1984) Regulation of Antennapedia transcript distribution by the bithorax complex in Drosophila. Nature 307:287–289

    Article  PubMed  CAS  Google Scholar 

  • Halder GP et al (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Hiromi Y, Gehring WJ (1987) Regulation and function of the Drosophila gene fushi tarazu. Cell 50:963–974

    Article  PubMed  CAS  Google Scholar 

  • Holley SA (2007) The genetics and embryology of zebrafish metamerism. Dev Dyn 236:1422–1449

    Article  PubMed  CAS  Google Scholar 

  • Hood L (2002) After the genome. Where should we go? In: Yudell M, DeSalle R (eds) The genomic revolution. Joseph Henry Press, Washington, DC, pp 64–73

    Google Scholar 

  • Jiang T-X et al (1999) Self organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126:4997–5009

    PubMed  CAS  Google Scholar 

  • Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  PubMed  CAS  Google Scholar 

  • Lawrence PA (1992) The making of a fly. The genetics of animal design. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  PubMed  CAS  Google Scholar 

  • Lewis EB (1992) Clusters of master control genes regulate the development of higher organisms. J Am Med Assoc 267:1524–1531

    Article  CAS  Google Scholar 

  • Lu P et al (1996) Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8:2155–2168

    PubMed  CAS  Google Scholar 

  • McGinnis W et al (1984a) A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complex. Nature 308:428–433

    Article  PubMed  CAS  Google Scholar 

  • McGinnis W et al (1984b) Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila. Cell 38:675–680

    Article  PubMed  CAS  Google Scholar 

  • McGrew MJ et al (1998) The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol 8:979–982

    Article  PubMed  CAS  Google Scholar 

  • Müntzing A (1961) Genetic research. A survey of methods and main results. LTs Förlag, Stockholm

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  • Quiring R et al (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Pomar R, Jäckle H (1996) From gradients to stripes in Drosophila: filling in the gaps. Trends Genet 12:478–483

    Article  PubMed  CAS  Google Scholar 

  • Salser S, Kenyon C (1994) Patterning C. elegans: homeotic cluster genes, cell fates and cell migrations. Trends Genet 10:159–164

    Article  PubMed  CAS  Google Scholar 

  • Schneuwly S et al (1987) Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325:816–818

    Article  PubMed  CAS  Google Scholar 

  • Scott M, Weiner A (1984) Structural relationships among genes that control development: sequence homology between Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci USA 81:4115–4119

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JCW et al (1984) Fly and frog homoeo domains show homologies with yeast mating type regulatory proteins. Nature 310:70–71

    Article  PubMed  CAS  Google Scholar 

  • Ting-Berreth SA, Chuong C-M (1996) Sonic hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. Dev Dyn 207:157–170

    Article  PubMed  CAS  Google Scholar 

  • Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472

    Article  PubMed  CAS  Google Scholar 

  • Werner T et al (2010) Generation of a novel wing colour pattern by the Wingless morphogen. Nature 464:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Wood WB et al (1988) The nematode “Caenorhabditis elegans”. Cold Spring Harbor Laboratory, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lima-de-Faria .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lima-de-Faria, A. (2012). How to Redesign the Body Pattern of an Organism. In: Molecular Geometry of Body Pattern in Birds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25301-0_7

Download citation

Publish with us

Policies and ethics