Skip to main content

The Evolution of the Birds

  • Chapter
  • First Online:
Molecular Geometry of Body Pattern in Birds
  • 733 Accesses

Abstract

The evolution of the birds is far from being understood. The new fossil findings in China have only added to the controversy. Monkeys have had an arboreal life, jumping down from trees, for 45 million years, without having acquired wings or wing rudiments. Actually flight did emerge in the mammals but in a quite different group—the bats.

Flight appears during evolution as a periodic phenomenon. It emerged for the first time in insects, the second time in pterosaurs (flying reptiles), later in birds and finally in bats. Some fishes are also able to fly. Of importance is that these animal groups are not directly related. During evolution flight came and disappeared without previous announcement. Until recently, the flight of an insect was considered to be, at best, analogous to that of a bird, but at present genetic analysis reveals that the same genes are responsible for the flight in invertebrates and vertebrates, the wing of an insect is determined by the same type of genes that decide the formation of the wing of a bird.

By genetic manipulation, flies that normally have two wings, can be produced with four wings and birds can also be obtained in the laboratory with four wings.

Evolution is usually assumed to be connected with progress and increased perfection, however it did not follow this pass in birds. The avian body lacks several organs that are vital to other animal groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affolter M et al (1990) Homeodomain proteins and the regulation of gene expression. Curr Opin Cell Biol 2:485–495

    Article  PubMed  CAS  Google Scholar 

  • Alberts B et al (1983) Molecular biology of the cell. Garland Publishing, New York

    Google Scholar 

  • Atkins P (1995) The periodic kingdom. A journey into the land of the chemical elements. Weidenfeld & Nicolson, London

    Google Scholar 

  • Babin C (1980) Elements of palaeontology. John Wiley & Sons, New York

    Google Scholar 

  • Barnes RD (1980) Invertebrate zoology. Saunders College, Philadelphia

    Google Scholar 

  • Beazley M (1974) The world atlas of birds. Mitchell Beazley Publishers Limited, London

    Google Scholar 

  • Beazley M (1980) The atlas of world wildlife. Rand McNally and Company, The Netherlands

    Google Scholar 

  • Bender W et al (1983) Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221:23–29

    Article  PubMed  CAS  Google Scholar 

  • Breitbart RE et al (1987) Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu Rev Biochem 56:467–495

    Article  PubMed  CAS  Google Scholar 

  • Briskie JV, Montgomerie R (2001) Efficient copulation and the evolutionary loss of the avian intromittent organ. J Avian Biol 32(2):184–187

    Article  Google Scholar 

  • Burnie D (2004) Animal. Dorling Kindersley, London

    Google Scholar 

  • Carroll RL (1987) Vertebrate paleontology and evolution. W.H. Freeman and Company, New York

    Google Scholar 

  • Cobourne MT, Sharpe PT (2010) Making up the numbers: the molecular control of mammalian dental formula. Semin Cell Dev Biol 21:314–324

    Article  PubMed  CAS  Google Scholar 

  • Cohn MJ et al (1997) Hox9 genes and vertebrate limb specification. Nature 387:97–101

    Article  PubMed  CAS  Google Scholar 

  • Colbert EH (1980) Evolution of the vertebrates. A history of the backboned animals through time. John Wiley and Sons, New York

    Google Scholar 

  • Davenport J (1994) How and why do flying fish fly? Rev Fish Biol Fisher 4:184–214

    Article  Google Scholar 

  • Davenport J (2003) Allometric constraints on stability and maximum size in flying fishes: implications for their evolution. J Fish Biol 62:455–463

    Article  Google Scholar 

  • de Duve C (1984) A guided tour of the living cell, vol II, Scientific American library. Scientific American Books Inc., New York

    Google Scholar 

  • De Robertis E et al (1990) Homeobox genes and the vertebrate body plan. Sci Am 1990:46–52

    Article  Google Scholar 

  • Dorrington J (1979) Pituitary and placental hormones. In: Austin CR, Short RV (eds) Mechanisms of hormone action, reproduction in mammals, book 7. Cambridge University Press, Cambridge, pp 53–80

    Google Scholar 

  • Duncan I (1987) The bithorax complex. Annu Rev Genet 21:285–319

    Article  PubMed  CAS  Google Scholar 

  • Feduccia A (1999) The origin and evolution of birds. Yale University Press, New Haven

    Google Scholar 

  • Flor H et al (2006) Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 7:873–881

    Article  PubMed  CAS  Google Scholar 

  • Frey R (1995) Copulatory organ, mating posture and locomotion: their interrelationship in non-mammalian vertebrates. J Zool Syst Evol Res 33(1):17–31

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1989) Chemistry of the elements. Pergamon Press, Oxford

    Google Scholar 

  • Greenwood PH, Thomson KS (1960) The pectoral anatomy of Pantodon bucholzi Peters (a freshwater flying fish) and the related Osteoglossidae. Proc Zool Soc Lond 135:283–301

    Google Scholar 

  • Hanström B, Johnels AG (1962). Benfiskar. In: Hanström B (ed) Djurens Värld, Band 6, Fiskar: 2. Förlagshuset Norden AB, Malmö, Sweden

    Google Scholar 

  • Holland P (1992) Homeobox genes in vertebrate evolution. Bioessays 14:267–273

    Article  PubMed  CAS  Google Scholar 

  • Lawrence PA (1992) The making of a fly. The genetics of animal design. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A (1995) Biological periodicity. Its molecular mechanism and evolutionary implications. JAI Press Inc., Greenwich

    Google Scholar 

  • Lima-de-Faria A (1997) The atomic basis of biological symmetry and periodicity. Biosystems 43:115–135

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A (2001) Genetic mechanisms involved in the periodicity of flight. Caryologia 54(3):189–208

    Google Scholar 

  • Macdonald D (1984) The encyclopaedia of mammals, vol 1–2. George Allen and Unwin, London

    Google Scholar 

  • Macdonald D (2002) The new encyclopedia of mammals. Oxford University Press, Oxford

    Google Scholar 

  • Margulis L, Schwartz KV (1982) Five kingdoms. An illustrated guide to the phyla of life on earth. WH Freeman and Company, San Francisco

    Google Scholar 

  • Mazurs EG (1974) Graphic representations of the periodic system during one hundred years. The University of Alabama Press, Alabama

    Google Scholar 

  • McFarland D (1981) The Oxford companion to animal behaviour. Oxford University Press, Oxford

    Google Scholar 

  • McGinnis W, Kuziora M (1994) The molecular architects of body design. Sci Am 270:36–42

    Article  Google Scholar 

  • Napier JR, Napier PH (1985) The natural history of the primates. British Museum (Natural History), London

    Google Scholar 

  • Ny T et al (1984) The structure of the human tissue-type plasminogen activator gene: correlation of intron and exon structures to functional and structural domains. Proc Natl Acad Sci USA 81:5355–5359

    Article  PubMed  CAS  Google Scholar 

  • Ostrom JH (1986) The cursorial origin of avian flight. In: Padian K (ed) The origin of birds and the evolution of flight. Mem Calif Acad Sci 8: 73–81

    Google Scholar 

  • Peifer M et al (1987) The bithorax complex: control of segmental identity. Genes Dev 1:891–898

    Article  Google Scholar 

  • Perrins C (ed) (2003) The world encyclopedia of birds. Oxford University Press, Oxford

    Google Scholar 

  • Pough FH et al (2005) Vertebrate life. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Rayner JMV (1986) Pleuston: animals which move in water and air. Endeav N Ser 10(2):58–64

    Article  CAS  Google Scholar 

  • Romer A, Parsons T (1978) The vertebrate body. Saunders Company, Philadelphia

    Google Scholar 

  • Romoser WS (1973) The science of entomology. Macmillan Publishing Co. Inc., New York

    Google Scholar 

  • RydĂ©n LG, Hunt LT (1993) Evolution of protein complexity: the blue copper containing oxidases and related proteins. J Mol Evol 36:41–66

    Article  PubMed  Google Scholar 

  • Sanderson RT (1967) Inorganic chemistry. Reinhold Publishing Co., New York

    Google Scholar 

  • Savage RJG, Long MR (1986) Mammal evolution. British Museum (Natural History), London

    Google Scholar 

  • Scerri ER (2007) The periodic table. Oxford University Press, Oxford

    Google Scholar 

  • Sereno PC, Chenggang R (1992) Early evolution of avian flight and perching: new evidence from the lower Cretaceous of China. Science 255:845–848

    Article  PubMed  CAS  Google Scholar 

  • Smith CWJ et al (1989) Alternative splicing in the control of gene expression. Annu Rev Genet 23:527–577

    Article  PubMed  CAS  Google Scholar 

  • SĂĽdhof TC et al (1985a) The LDL receptor gene: a mosaic of exons shared with different proteins. Science 228:815–822

    Article  PubMed  Google Scholar 

  • SĂĽdhof TC et al (1985b) Casette of eight exons shared by genes for LDL receptor and EGF precursor. Science 228:893–895

    Article  PubMed  Google Scholar 

  • van der Ploeg LHT (1990) Antigenic variation in African trypanosomes: genetic recombination and transcriptional control of VSG genes. In: Hames BD, Glover DM (eds) Gene rearrangement. IRL Press, Oxford University Press, Oxford, pp 51–97

    Google Scholar 

  • Walker C (1974) Introduction: the world of birds. In: The world atlas of birds. Mitchell Beazley Publishers, London, pp 10–33

    Google Scholar 

  • Wesolowski T (1999) Reduction of phallus in birds – an avian way to safe sex? J Avian Biol 30(4):483–485

    Article  Google Scholar 

  • Zhou Z (2004) The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften 91:455–471

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lima-de-Faria .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lima-de-Faria, A. (2012). The Evolution of the Birds. In: Molecular Geometry of Body Pattern in Birds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25301-0_4

Download citation

Publish with us

Policies and ethics