A Component Model for the ABS Language

  • Michaël Lienhardt
  • Ivan Lanese
  • Mario Bravetti
  • Davide Sangiorgi
  • Gianluigi Zavattaro
  • Yannick Welsch
  • Jan Schäfer
  • Arnd Poetzsch-Heffter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6957)


Finding good abstractions to model and express partial update, mobility and wrapping in object-oriented systems remains challenging. In this paper, we propose Comp, a process calculus approach for component models that merges aspects of object-orientation and evolution. The key features of Comp are: a hierarchical structure of components; the capacity to move, update, wrap components; method interfaces for components; and some isolation capacities to encode distribution and wrapping. Specifically, we introduce the syntax of Comp and formulate its operational semantics. We show a number of examples of use of Comp, with particular emphasis on common evolution patterns for components.


Component Model Output Port Operational Semantic Formal Semantic Method Call 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous objects. Science of Computer Programming (2010) (in press)Google Scholar
  2. 2.
    OSGi Alliance. Osgi Service Platform, Release 3. IOS Press, Inc., Amsterdam (2003)Google Scholar
  3. 3.
    Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D., Chiu, W.: Coyote: A system for constructing fine-grain configurable communication services. ACM Trans. Comput. Syst. 16(4) (1998)Google Scholar
  4. 4.
    Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The Fractal Component Model and its Support in Java. Software - Practice and Experience 36(11-12) (2006)Google Scholar
  5. 5.
    Bugliesi, M., Castagna, G., Crafa, S.: Access control for mobile agents: the calculus of boxed ambients. ACM. Trans. Prog. Languages and Systems 26(1) (2004)Google Scholar
  6. 6.
    Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science 240(1) (2000)Google Scholar
  7. 7.
    Castagna, G., Vitek, J., Nardelli, F.Z.: The Seal calculus. Inf. Comput. 201(1) (2005)Google Scholar
  8. 8.
    Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: OpenCOM v2: A Component Model for Building Systsms Software. In: Proceedings of IASTED Software Engineering and Applications, SEA 2004 (2004)Google Scholar
  9. 9.
    de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Full ABS Modeling Framework, Deliverable 1.2 of project FP7-231 620 (HATS) (March 2011),
  11. 11.
    Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 268–332. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    European Project HATS,
  13. 13.
    Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)CrossRefGoogle Scholar
  14. 14.
    Leclercq, M., Quema, V., Stefani, J.-B.: DREAM: a Component Framework for the Construction of Resource-Aware, Configurable MOMs. IEEE Distributed Systems Online 6(9) (2005)Google Scholar
  15. 15.
    Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s Method for Calculi with Passivation. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 448–462. Springer, Heidelberg (2009), doi:10.1007/978-3-642-04081-8_30CrossRefGoogle Scholar
  16. 16.
    Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM. Trans. Prog. Languages and Systems 25(1) (2003)Google Scholar
  17. 17.
    Lienhardt, M., Schmitt, A., Stefani, J.-B.: Oz/k: A kernel language for component-based open programming. In: GPCE 2007: Proceedings of the 6th International Conference on Generative Programming and Component Engineering, pp. 43–52. ACM, New York (2007)Google Scholar
  18. 18.
    Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., Constable, R.: Building Reliable, High-Performance Communication Systems from Components. In: Proceedings of the 1999 ACM Symposium on Operating Systems Principles, Kiawah Island, SC (December 1999)Google Scholar
  19. 19.
    Merro, M., Nardelli, F.Z.: Behavioral theory for mobile ambients. J. ACM 52(6), 961–1023 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Inform. and Comput. 100(1), 1–40, 41–77 (1992)Google Scholar
  21. 21.
    Miranda, H., Pinto, A.S., Rodrigues, L.: Appia: A flexible protocol kernel supporting multiple coordinated channels. In: 21st International Conference on Distributed Computing Systems (ICDCS 2001). IEEE Computer Society, Los Alamitos (2001)Google Scholar
  22. 22.
    Montesi, F., Sangiorgi, D.: A model of evolvable components. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 153–171. Springer, Heidelberg (2010), doi:10.1007/978-3-642-15640-3_11CrossRefGoogle Scholar
  23. 23.
    Morris, R., Kohler, E., Jannotti, J., Frans Kaashoek, M.: The Click Modular Router. In: ACM Symposium on Operating Systems Principles (1999)Google Scholar
  24. 24.
    Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In: Proceedings of the 20th International Conference on Software Engineering, ICSE 1998, pp. 177–186. IEEE Computer Society, Washington, DC, USA (1998)Google Scholar
  25. 25.
    Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework, approaches, and styles. In: Companion of the 30th International Conference on Software Engineering, ICSE Companion 2008, pp. 899–910. ACM, New York (2008)Google Scholar
  26. 26.
    Sangiorgi, D.: From pi-calculus to higher-order pi-calculus - and back. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 151–166. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  27. 27.
    Schäfer, J., Poetzsch-Heffter, A.: Jcobox: Generalizing active objects to concurrent components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Schmitt, A., Stefani, J.-B.: The M-calculus: A Higher-Order Distributed Process Calculus. In: Proceedings 30th Annual ACM Symposium on Principles of Programming Languages, POPL (2003)Google Scholar
  29. 29.
    Schmitt, A., Stefani, J.-B.: The Kell Calculus: A Family of Higher-Order Distributed Process Calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 146–178. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Sun Microsystems. JSR 220: Enterprise JavaBeans, Version 3.0 – EJB Core Contracts and Requirements (2006)Google Scholar
  31. 31.
    Szyperski, C.: Component Software, 2nd edn. Addison-Wesley, Reading (2002)zbMATHGoogle Scholar
  32. 32.
    Teller, D., Zimmer, P., Hirschkoff, D.: Using Ambients to Control Resources. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michaël Lienhardt
    • 1
  • Ivan Lanese
    • 1
  • Mario Bravetti
    • 1
  • Davide Sangiorgi
    • 1
  • Gianluigi Zavattaro
    • 1
  • Yannick Welsch
    • 2
  • Jan Schäfer
    • 2
  • Arnd Poetzsch-Heffter
    • 2
  1. 1.Focus TeamUniversity of BolognaItaly
  2. 2.Software Technology GroupUniversity of KaiserslauternGermany

Personalised recommendations