Advertisement

The Hierarchical Compositional Interchange Format

  • Damian Nadales Agut
  • Bert van Beek
  • Harsh Beohar
  • Pieter Cuijpers
  • Jasper Fonteijn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6957)

Abstract

In computer science, the development of hierarchical automata / statecharts has lead to stepwise development of complex discrete systems. Such a concept is absent in the Compositional Interchange Format (CIF), which is a modelling language based on hybrid automata. In this article we extend the CIF language with the concept of hierarchy, which results in the Hierarchical Compositional Interchange format (HCIF). Syntactically, hierarchy is introduced by adding three concepts to CIF: a hierarchy function from a location to a HCIF composition, a termination predicate, and disruptive edges. The semantics of HCIF is given by means of Structural Operational Semantics rules. The semantics of a hierarchical automaton is defined in a compositional manner, by referring only to the transition system of the substructures, and not to their syntactic representation. This compositional introduction of hierarchy allows us to keep the semantics of the HCIF operators almost unchanged with respect to their CIF versions. Finally, a case-study called Patient Support System is modelled in HCIF to show its applicability.

Keywords

Active Location Disruptive Edge Parallel Composition Hybrid Automaton Environment Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dang, T., Esposito, J., Hur, Y., Ivanc̃ić, F., Kumar, V., Lee, I., Mishra, P., Pappas, G.J., Sokolsky, O.: Hierarchical modeling and analysis of embedded systems. Proceedings of the IEEE 91(1), 11–28 (2003)CrossRefGoogle Scholar
  2. 2.
    Baeten, J., van Beek, D., Hendriks, D., Hofkamp, A., Agut, D.N., Rooda, J., Schiffelers, R.: Definition of the compositional interchange format. Technical Report Deliverable D1.1.2, Multiform (2010)Google Scholar
  3. 3.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in bip. In: Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods, pp. 3–12. IEEE Computer Society, Washington, DC, USA (2006)CrossRefGoogle Scholar
  4. 4.
    van Beek, D.A., Collins, P., Nadales, D.E., Rooda, J., Schiffelers, R.R.H.: New concepts in the abstract format of the compositional interchange format. In: Giua, A., Mahuela, C., Silva, M., Zaytoon, J. (eds.) 3rd IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza, Spain, pp. 250–255 (2009)Google Scholar
  5. 5.
    van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Foundations of a compositional interchange format for hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 587–600. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Beohar, H., Nadales Agut, D.E., van Beek, D.A., Cuijpers, P.J.L.: Hierarchical states in the compositional interchange format. Electronic Proceedings in Theoretical Computer Science 32, 42–56 (2010)CrossRefGoogle Scholar
  7. 7.
    C4C consortium. Control for coordination of distributed systems (2008), http://www.c4c-project.eu/
  8. 8.
    Cuijpers, P.J.L., Reniers, M.A., Heemels, W.P.M.H.: Hybrid transition systems. Technical Report CS-Report 02-12, Eindhoven University of Technology, Department of Computer Science, The Netherlands (2002)Google Scholar
  9. 9.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming 8(3), 231–274 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series F: Computer and Systems Science, vol. 170, pp. 265–292. Springer, New York (2000)CrossRefGoogle Scholar
  12. 12.
    H. Highly-complex and networked control systems (2010), http://www.hycon2.eu/
  13. 13.
    HYCON Network of Excellence (2005), http://www.ist-hycon.org/
  14. 14.
    Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata revisited. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 403–417. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: Notions of bisimulation and congruence formats for SOS with data. Information and Computation 200(1), 107–147 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    MULTIFORM consortium. Integrated multi-formalism tool support for the design of networked embedded control systems MULTIFORM (2008), http://www.multiform.bci.tu-dortmund.de
  17. 17.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Reynolds, J.C.: Theories of programming languages. Cambridge University Press, New York (1999)zbMATHGoogle Scholar
  19. 19.
    The MathWorks, Inc., Simulink (2011), http://www.mathworks.com
  20. 20.
    Theunissen, R.J.M., Petreczky, M., Schiffelers, R.R.H., van Beek, D.A., Rooda, J.E.: Application of supervisory control synthesis to MRI scanners: improving evolvability. SE Report 2010-06, System Engineering Group, Department of Mechanical Engineering, Eindhoven university of technology, Eindhoven (2010)Google Scholar
  21. 21.
    Uselton, A.E., Smolka, S.A.: State Refinement in Process Algebra. Technical report, Stony Brook university, NY (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Damian Nadales Agut
    • 1
  • Bert van Beek
    • 1
  • Harsh Beohar
    • 1
  • Pieter Cuijpers
    • 1
  • Jasper Fonteijn
    • 1
  1. 1.Eindhoven University of Technology (TU/e)The Netherlands

Personalised recommendations