Skip to main content

Homotopic Object Reconstruction Using Natural Neighbor Barycentric Coordinates

  • Chapter
Transactions on Computational Science XIV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6970))

Abstract

One of the challenging problems in computer vision is object reconstruction from cross sections. In this paper, we address the problem of 2D object reconstruction from arbitrary linear cross sections. This problem has not been much discussed in the literature, but holds great importance since it lifts the requirement of order within the cross sections in a reconstruction problem, consequently making the reconstruction problem harder. Our approach to the reconstruction is via continuous deformations of line intersections in the plane. We define Voronoi diagram based barycentric coordinates on the edges of n-sided convex polygons as the area stolen by any point inside a polygon from the Voronoi regions of each open oriented line segment bounding the polygon. These allow us to formulate homotopies on edges of the polygons from which the underlying object can be reconstructed. We provide results of the reconstruction including the necessary derivation of the gradient at polygon edges and the optimal placement of cutting lines. Accuracy of the suggested reconstruction is evaluated by means of various metrics and compared with one of the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CGAL, Computational Geometry Algorithms Library, http://www.cgal.org

  2. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for polygons. Journal of Universal Computer Science 1(12), 752–761 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Allgower, E.L., Georg, K.: Numerical continuation methods: an introduction. Springer-Verlag New York, Inc., New York (1990)

    Book  MATH  Google Scholar 

  4. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using the hausdorff distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo., vol. 1, pp. 705–708 (2002)

    Google Scholar 

  5. Bai, X., Latecki, L., Liu, W.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 449–462 (2007)

    Article  Google Scholar 

  6. Dougherty, G., Varro, J.: A quantitative index for the measurement of the tortuosity of blood vessels. Medical Engineering & Physics 22(8), 567–574 (2000)

    Article  Google Scholar 

  7. Jänich, K.: Topology, Undergraduate texts in mathematics (1984)

    Google Scholar 

  8. Latecki, L.J., Lakämper, R.: Polygon Evolution by Vertex Deletion. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 398–409. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Liu, L., Bajaj, C., Deasy, J.O., Low, D.A., Ju, T.: Surface reconstruction from non-parallel curve networks. Computer Graphics Forum 27, 155 (2008)

    Article  Google Scholar 

  10. Memari, P., Boissonnat, J.D.: Provably Good 2D Shape Reconstruction from Unorganized Cross-Sections. Computer Graphics Forum 27, 1403–1410 (2008)

    Article  Google Scholar 

  11. Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized barycentric coordinates on irregular polygons. Journal of Graphics, GPU, and Game Tools 7(1), 13–22 (2002)

    Article  MATH  Google Scholar 

  12. Munkres, J.: Topology, 2nd edn. Prentice Hall (1999)

    Google Scholar 

  13. Patasius, M., Marozas, V., Lukosevicius, A., Jegelevicius, D.: Model based investigation of retinal vessel tortuosity as a function of blood pressure: preliminary results. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6459–6462 (2007)

    Google Scholar 

  14. Saucan, E., Appleboim, E., Zeevi, Y.Y.: Geometric approach to sampling and communication. Arxiv preprint arXiv:1002.2959 (2010)

    Google Scholar 

  15. Sidlesky, A., Barequet, G., Gotsman, C.: Polygon Reconstruction from Line Cross-Sections. In: Canadian Conference on Computational Geometry (2006)

    Google Scholar 

  16. Wachspress, E.L.: A rational finite element basis. Academic Press (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, O., Anton, F. (2011). Homotopic Object Reconstruction Using Natural Neighbor Barycentric Coordinates. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds) Transactions on Computational Science XIV. Lecture Notes in Computer Science, vol 6970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25249-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25249-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25248-8

  • Online ISBN: 978-3-642-25249-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics