Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6970))

Abstract

A Jensen-Bregman divergence is a distortion measure defined by a Jensen convexity gap induced by a strictly convex functional generator. Jensen-Bregman divergences unify the squared Euclidean and Mahalanobis distances with the celebrated information-theoretic Jensen-Shannon divergence, and can further be skewed to include Bregman divergences in limit cases. We study the geometric properties and combinatorial complexities of both the Voronoi diagrams and the centroidal Voronoi diagrams induced by such as class of divergences. We show that Jensen-Bregman divergences occur in two contexts: (1) when symmetrizing Bregman divergences, and (2) when computing the Bhattacharyya distances of statistical distributions. Since the Bhattacharyya distance of popular parametric exponential family distributions in statistics can be computed equivalently as Jensen-Bregman divergences, these skew Jensen-Bregman Voronoi diagrams allow one to define a novel family of statistical Voronoi diagrams.

This journal article revises and extends the conference paper [1] presented at the International Symposium on Voronoi Diagrams (ISVD) 2010. This paper includes novel extensions to matrix-based Jensen-Bregman divergences, and present the general framework of skew Jensen-Bregman Voronoi diagrams that include Bregman Voronoi diagrams as particular cases. Supporting materials available at http://www.informationgeometry.org/JensenBregman/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, F., Nock, R.: Jensen-Bregman Voronoi diagrams and centroidal tessellations. In: Proceedings of the 2010 International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 56–65. IEEE Computer Society, Washington, DC (2010)

    Chapter  Google Scholar 

  2. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: Concepts and applications of Voronoi diagrams. In: Probability and Statistics, 2nd edn., 671 pages. Wiley, NYC (2000)

    Google Scholar 

  3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  4. Lee, D.T.: Two-dimensional Voronoi diagrams in the L p -metric. Journal of the ACM 27, 604–618 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chew, L.P., Dyrsdale III, R.L.S.: Voronoi diagrams based on convex distance functions. In: Proceedings of the First Annual Symposium on Computational Geometry, SCG 1985, pp. 235–244. ACM, New York (1985)

    Chapter  Google Scholar 

  6. Boissonnat, J.D., Nielsen, F., Nock, R.: Bregman Voronoi diagrams. Discrete and Computational Geometry 44(2), 281–307 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory 37, 145–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York (1991)

    Book  MATH  Google Scholar 

  9. Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: Applications and algorithms. SIAM Rev. 41, 637–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London 186, 453–461 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  11. Reid, M.D., Williamson, R.C.: Generalised Pinsker inequalities. CoRR abs/0906.1244 (2009); published at COLT 2009

    Google Scholar 

  12. Chen, P., Chen, Y., Rao, M.: Metrics defined by Bregman divergences: Part I. Commun. Math. Sci. 6, 9915–9926 (2008)

    Google Scholar 

  13. Chen, P., Chen, Y., Rao, M.: Metrics defined by Bregman divergences: Part II. Commun. Math. Sci. 6, 927–948 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burbea, J., Rao, C.R.: On the convexity of some divergence measures based on entropy functions. IEEE Transactions on Information Theory 28, 489–495 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete & Computational Geometry 10, 377–409 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345–405 (1991)

    Article  Google Scholar 

  17. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and their Geometric Applications. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  18. Icking, C., Ha, L.: A tight bound for the complexity of Voronoi diagrams under polyhedral convex distance functions in 3d. In: STOC 2001: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 316–321. ACM, New York (2001)

    Chapter  Google Scholar 

  19. Ma, L.: Bisectors and Voronoi diagrams for convex distance functions, PhD thesis (2000)

    Google Scholar 

  20. Dickerson, M., Eppstein, D., Wortman, K.A.: Dilation, smoothed distance, and minimization diagrams of convex functions, arXiv 0812.0607

    Google Scholar 

  21. Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: a variant of Lloyd’s method. ACM Trans. Graph. 28 (2009)

    Google Scholar 

  22. Yuille, A., Rangarajan, A.: The concave-convex procedure. Neural Computation 15, 915–936 (2003)

    Article  MATH  Google Scholar 

  23. Arshia Cont, S.D., Assayag, G.: On the information geometry of audio streams with applications to similarity computing. IEEE Transactions on Audio, Speech and Language Processing 19 (2011) (to appear)

    Google Scholar 

  24. Cowin, S.C., Yang, G.: Averaging anisotropic elastic constant data. Journal of Elasticity 46, 151–180 (1997), doi:10.1023/A:1007335407097

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y.H., Han, C.Z.: Polsar image segmentation by mean shift clustering in the tensor space. Acta Automatica Sinica 36, 798–806 (2010)

    Google Scholar 

  26. Xie, Y., Vemuri, B.C., Ho, J.: Statistical Analysis of Tensor Fields. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 682–689. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Tsuda, K., Rätsch, G., Warmuth, M.K.: Matrix exponentiated gradient updates for on-line learning and bregman projection. Journal of Machine Learning Research 6, 995–1018 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra and its Applications 413, 594–618 (2006); Special Issue on the 11th Conference of the International Linear Algebra Society, Coimbra (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Transactions on Information Theory (2010)

    Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  31. Burbea, J., Rao, C.R.: On the convexity of higher order Jensen differences based on entropy functions. IEEE Transactions on Information Theory 28, 961–963 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Csiszár, I.: Information theoretic methods in probability and statistics

    Google Scholar 

  33. Vos, P.: Geometry of f-divergence. Annals of the Institute of Statistical Mathematics 43, 515–537 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hastie, T., Tibshirani, R., Friedman, R.: Elements of Statistical Learning Theory. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  35. Nielsen, F., Garcia, V.: Statistical exponential families: A digest with flash cards (2009) arXiv.org:0911.4863

    Google Scholar 

  36. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of Calcutta Mathematical Society 35, 99–110 (1943)

    MathSciNet  MATH  Google Scholar 

  37. Matusita, K.: Decision rules based on the distance, for problems of fit, two samples, and estimation. Annal of Mathematics and Statistics 26, 631–640 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  38. Huzurbazar, V.S.: Exact forms of some invariants for distributions admitting sufficient statistics. Biometrika 42, 533–573 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kailath, T.: The divergence and Bhattacharyya distance measures in signal selection. IEEE Transactions on Communications [legacy, pre - 1988] 15, 52–60 (1967)

    Article  Google Scholar 

  40. Jebara, T., Kondor, R.: Bhattacharyya and expected likelihood kernels. In: 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel, p. 57 (2003)

    Google Scholar 

  41. Sahoo, P.K., Wong, A.K.C.: Generalized Jensen difference based on entropy functions. Kybernetika, 241–250 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nielsen, F., Nock, R. (2011). Skew Jensen-Bregman Voronoi Diagrams. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds) Transactions on Computational Science XIV. Lecture Notes in Computer Science, vol 6970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25249-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25249-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25248-8

  • Online ISBN: 978-3-642-25249-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics