Skip to main content

Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6970))

Abstract

We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them.

For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks.

Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field.

Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R.J., Bobrowski, O., Borman, M.S., Subag, E., Weinberger, S.: Persistent homology for random fields and complexes. Collections, 1–6 (2010), http://arxiv.org/abs/1003.1001

  2. Adler, R.J., Taylor, J.E.: Random fields and geometry (2007)

    Google Scholar 

  3. Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S.: The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15–61 (1986)

    Article  Google Scholar 

  4. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE Trans. Vis. Comput. Graph. 16(6), 1251–1260 (2010)

    Article  Google Scholar 

  5. Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Spergel, D.N., Tucker, G.S., Wollack, E., Wright, E.L., Barnes, C., Greason, M.R., Hill, R.S., Komatsu, E., Nolta, M.R., Odegard, N., Peiris, H.V., Verde, L., Weiland, J.L.: First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophys. J. Suppl. 148, 1–27 (2003)

    Article  Google Scholar 

  6. Bond, J., Kofman, L., Pogosyan, D.: How filaments are woven into the cosmic web. Nature 380, 603–606 (1996)

    Article  Google Scholar 

  7. de Boni, C., Dolag, K., Ettori, S., Moscardini, L., Pettorino, V., Baccigalupi, C.: Hydrodynamical simulations of galaxy clusters in dark energy cosmologies. Mon. Not. R. Astron. Soc. 414, 780 (2011)

    Google Scholar 

  8. Bos, P.C. , van de Weygaert, R., Dolag, K., Pettorino, V.: Void shapes as probes of the nature of dark energy. Mon. Not. R. Astron. Soc. (2011)

    Google Scholar 

  9. Calvo, M.A.A., Shandarin, S.F., Szalay, A.: Geometry of the cosmic web: Minkowski functionals from the delaunay tessellation. In: International Symposium on Voronoi Diagrams in Science and Engineering, pp. 235–243 (2010)

    Google Scholar 

  10. Cautun, M.C., van de Weygaert, R.: The DTFE public software - The Delaunay Tessellation Field Estimator code. ArXiv e-prints (May 2011)

    Google Scholar 

  11. Choi, Y.Y., Park, C., Kim, J., Gott, J.R., Weinberg, D.H., Vogeley, M.S., Kim, S.S.: For the SDSS Collaboration: Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models. Astrophys. J. Suppl. 190, 181–202 (2010)

    Article  Google Scholar 

  12. Colless, M.: 2dF consortium: The 2df galaxy redshift survey: Final data release pp. 1–32 (2003); astroph/0306581

    Google Scholar 

  13. Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for betti numbers of simplicial complexes. In: Symposium on Computational Geometry, pp. 232–239 (1993)

    Google Scholar 

  14. Dey, T., Edelsbrunner, H., Guha, S.: Computational topology. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, pp. 109–143. American Mathematical Society (1999)

    Google Scholar 

  15. Edelsbrunner, H.: Alpha shapes - a survey. In: van de Weygaert, R., Vegter, G., Ritzerveld, J., Icke, V. (eds.) Tessellations in the Sciences; Virtues, Techniques and Applications of Geometric Tilings. Springer, Heidelberg (2010)

    Google Scholar 

  16. Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Discrete Appl. Math. 88, 83–102 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Edelsbrunner, H., Harer, J.: Computational Topology, An Introduction. American Mathematical Society (2010)

    Google Scholar 

  18. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inform. Theory 29, 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistance and simplification. Discrete and Computational Geometry 28, 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Edelsbrunner, H., Muecke, E.: Three-dimensional alpha shapes. ACM Trans. Graphics 13, 43–72 (1994)

    Article  MATH  Google Scholar 

  21. Eisenstein, D.J., Hu, W.: Baryonic Features in the Matter Transfer Function. Astrophys.J. 496, 605–614 (1998)

    Article  Google Scholar 

  22. Eldering, B.: Topology of Galaxy Models, MSc thesis, Univ. Groningen (2006)

    Google Scholar 

  23. Gott, J.R., Choi, Y.Y., Park, C., Kim, J.: Three-Dimensional Genus Topology of Luminous Red Galaxies. Astrophys. J. Lett. 695, L45–L48 (2009)

    Article  Google Scholar 

  24. Gott III, J.R., Miller, J., Thuan, T.X., Schneider, S.E., Weinberg, D.H., Gammie, C., Polk, K., Vogeley, M., Jeffrey, S., Bhavsar, S.P., Melott, A.L., Giovanelli, R., Hayes, M.P., Tully, R.B., Hamilton, A.J.S.: The topology of large-scale structure. III - Analysis of observations. Astrophys. J. 340, 625–646 (1989)

    Article  Google Scholar 

  25. Gott, J., Dickinson, M., Melott, A.: The sponge-like topology of large-scale structure in the universe. Astrophys. J. 306, 341–357 (1986)

    Article  MathSciNet  Google Scholar 

  26. Hamilton, A.J.S., Gott III, J.R., Weinberg, D.: The topology of the large-scale structure of the universe. Astrophys. J. 309, 1–12 (1986)

    Article  MathSciNet  Google Scholar 

  27. Hoyle, F., Vogeley, M.S., Gott III, J.R., Blanton, M., Tegmark, M., Weinberg, D.H., Bahcall, N., Brinkmann, J., York, D.: Two-dimensional Topology of the Sloan Digital Sky Survey. Astrophys. J. 580, 663–671 (2002)

    Article  Google Scholar 

  28. Huchra, J., et al.: The 2mass redshift survey and low galactic latitude large-scale structure. In: Fairall, A.P., Woudt, P.A. (eds.) Nearby Large-Scale Structures and the Zone of Avoidance. ASP Conf. Ser., vol. 239, pp. 135–146. Astron. Soc. Pacific, San Francisco (2005)

    Google Scholar 

  29. Icke, V.: Voids and filaments. Mon. Not. R. Astron. Soc. 206, 1P–3P (1984)

    Article  Google Scholar 

  30. Kauffmann, G., Colberg, J.M., Diaferio, A., White, S.D.M.: Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0. Mon. Not. R. Astron. Soc. 303, 188–206 (1999)

    Article  Google Scholar 

  31. Komatsu, E., Smith, K.M., Dunkley, J., et al.: Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. eprint arXiv:1001.4538 (January 2010)

    Google Scholar 

  32. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape. Proteins: Structure, Function, and Genetics 33, 1–17 (1998)

    Article  Google Scholar 

  33. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape computation of macromolecules: Ii. inaccessible cavities in proteins. Proteins: Structure, Function, and Genetics 33, 18–29 (1998)

    Article  Google Scholar 

  34. Liang, J., Woodward, C., Edelsbrunner, H.: Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Science 7, 1884–1897 (1998)

    Article  Google Scholar 

  35. Mecke, K., Buchert, T., Wagner, H.: Robust morphological measures for large-scale structure in the universe. Astron. Astrophys. 288, 697–704 (1994)

    Google Scholar 

  36. Moore, B., Frenk, C.S., Weinberg, D.H., Saunders, W., Lawrence, A., Ellis, R.S., Kaiser, N., Efstathiou, G., Rowan-Robinson, M.: The topology of the QDOT IRAS redshift survey. Mon. Not. R. Astron. Soc. 256, 477–499 (1992)

    Article  Google Scholar 

  37. Muecke, E.: Shapes and Implementations in three-dimensional geometry, PhD thesis, Univ. Illinois Urbana-Champaign (1993)

    Google Scholar 

  38. Park, C., Chingangbam, P., van de Weygaert, R., Vegter, G., Kim, I., Hidding, J., Hellwing, W., Pranav, P.: Betti numbers of gaussian random fields. Astrophys. J. (2011) (to be subm.)

    Google Scholar 

  39. Park, C., Gott III, J.R., Melott, A.L., Karachentsev, I.D.: The topology of large-scale structure. VI - Slices of the universe. Astrophys. J. 387, 1–8 (1992)

    Google Scholar 

  40. Park, C., Kim, J., Gott III, J.R.: Effects of Gravitational Evolution, Biasing, and Redshift Space Distortion on Topology. Astrophys. J. 633, 1–10 (2005)

    Article  Google Scholar 

  41. Park, C., Kim, Y.R.: Large-scale Structure of the Universe as a Cosmic Standard Ruler. Astrophys. J. Lett. 715, L185–L188 (2010)

    Article  Google Scholar 

  42. Peebles, P.: The Large Scale Structure of the Universe. Princeton Univ. Press (1980)

    Google Scholar 

  43. Pranav, P., Edelsbrunner, H., van de Weygaert, R., Vegter, G.: On the alpha and betti of the universe: Multiscale persistence of the cosmic web. Mon. Not. R. Astron. Soc. (2011) (to be subm.)

    Google Scholar 

  44. Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D. 37, 3406–3427 (1988)

    Article  Google Scholar 

  45. Sahni, V., Sathyprakash, B.S., Shandarin, S.: Shapefinders: A new shape diagnostic for large-scale structure. Astrophys. J. 507, L109–L112 (1998)

    Article  Google Scholar 

  46. Schaap, W.E., van de Weygaert, R.: Continuous fields and discrete samples: reconstruction through Delaunay tessellations. Astron. Astrophys. 32, L29–L32 (2000)

    Google Scholar 

  47. Schmalzing, J., Buchert, T.: Beyond Genus Statistics: A Unifying Approach to the Morphology of Cosmic Structure. Astrophys. J. Lett. 482, L1–L4 (1997)

    Article  Google Scholar 

  48. Schmalzing, J., Buchert, T., Melott, A., Sahni, V., Sathyaprakash, B., Shandarin, S.: Disentangling the cosmic web. i. morphology of isodensity contours. Astrophys. J. 526, 568–578 (1999)

    Article  Google Scholar 

  49. Sheth, R.K., van de Weygaert, R.: A hierarchy of voids: much ado about nothing. Mon. Not. R. Astron. Soc. 350, 517–538 (2004)

    Article  Google Scholar 

  50. Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., de Amici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R., Wilkinson, D.T.: Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Lett. 396, L1–L5 (1992)

    Article  Google Scholar 

  51. Sousbie, T.: The persistent cosmic web and its filamentary structure - I. Theory and implementation. Mon. Not. R. Astron. Soc., pp. 511–+ (April 2011)

    Google Scholar 

  52. Sousbie, T., Colombi, S., Pichon, C.: The fully connected N-dimensional skeleton: probing the evolution of the cosmic web. Mon. Not. R. Astron. Soc. 393, 457–477 (2009)

    Article  Google Scholar 

  53. Sousbie, T., Pichon, C., Colombi, S., Novikov, D., Pogosyan, D.: The 3D skeleton: tracing the filamentary structure of the Universe. Mon. Not. R. Astron. Soc. 383, 1655–1670 (2008)

    Article  Google Scholar 

  54. Sousbie, T., Pichon, C., Courtois, H., Colombi, S., Novikov, D.: The Three-dimensional Skeleton of the SDSS. Astrophys. J. Lett. 4, L1–L4 (2008)

    Article  Google Scholar 

  55. Sousbie, T., Pichon, C., Kawahara, H.: The persistent cosmic web and its filamentary structure - II. Illustrations. Mon. Not. R. Astron. Soc., pp. 530–+ (2011)

    Google Scholar 

  56. Spergel, D.N., Bean, R., Doré, O., Nolta, M.R., Bennett, C.L., Dunkley, J., Hinshaw, G., Jarosik, N., Komatsu, E., Page, L., Peiris, H.V., Verde, L., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., Wright, E.L.: Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophys. J. Suppl. 170, 377–408 (2007)

    Article  Google Scholar 

  57. Springel, V., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    Article  Google Scholar 

  58. Tegmark, M., et al.: The three-dimensional power spectrum of galaxies from the sloan digital sky survey. Astrophys. J. 606, 702–740 (2004)

    Article  Google Scholar 

  59. van de Weygaert, R.: Voids and the geometry of large scale structure, PhD thesis, University of Leiden (1991)

    Google Scholar 

  60. van de Weygaert, R., Bertschinger, E.: Peak and gravity constraints in Gaussian primordial density fields: An application of the Hoffman-Ribak method. Mon. Not. R. Astron. Soc. 281, 84–118 (1996)

    Article  Google Scholar 

  61. van de Weygaert, R., Bond, J.R.: Clusters and the Theory of the Cosmic Web. In: Plionis, M., López-Cruz, O., Hughes, D. (eds.) A Pan-Chromatic View of Clusters of Galaxies and the Large-Scale Structure. Lecture Notes in Physics, vol. 740, pp. 335–407. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  62. van de Weygaert, R., Bond, J.R.: Observations and Morphology of the Cosmic Web. In: Plionis, M., López-Cruz, O., Hughes, D. (eds.) A Pan-Chromatic View of Clusters of Galaxies and the Large-Scale Structure. Lecture Notes in Physics, vol. 740, pp. 409–467. Springer, Berlin (2008)

    Chapter  Google Scholar 

  63. van de Weygaert, R., Icke, V.: Fragmenting the universe. II - Voronoi vertices as Abell clusters. Astron. Astrophys. 213, 1–9 (1989)

    Google Scholar 

  64. van de Weygaert, R., Schaap, W.: The Cosmic Web: Geometric Analysis. In: Martínez, V.J., Saar, E., Martínez-González, E., Pons-Bordería, M.-J. (eds.) Data Analysis in Cosmology. Lecture Notes in Physics, vol. 665, pp. 291–413. Springer, Berlin (2009)

    Chapter  Google Scholar 

  65. Vegter, G.: Computational topology. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 32, pp. 719–742. CRC Press LLC, Boca Raton (2004)

    Google Scholar 

  66. Vegter, G., van de Weygaert, R., Platen, E., Kruithof, N., Eldering, B.: Alpha shapes and the topology of cosmic large scale structure. Mon. Not. R. Astron. Soc. (2010) (in prep.)

    Google Scholar 

  67. Vogeley, M.S., Park, C., Geller, M.J., Huchra, J.P., Gott III, J.R.: Topological analysis of the CfA redshift survey. Astrophys. J. 420, 525–544 (1994)

    Article  Google Scholar 

  68. van de Weygaert, R., Pranav, P., Jones, B., Vegter, G., Bos, P., Park, C., Hellwing, W.: Probing dark energy with betti-analysis of simulations. Astrophys. J. Lett. (2011) (to be subm.)

    Google Scholar 

  69. van de Weygaert, R., Platen, E., Vegter, G., Eldering, B., Kruithof, N.: Alpha shape topology of the cosmic web. In: International Symposium on Voronoi Diagrams in Science and Engineering, pp. 224–234 (2010)

    Google Scholar 

  70. van de Weygaert, R.: Voronoi tessellations and the cosmic web: Spatial patterns and clustering across the universe. In: ISVD 2007: Proceedings of the 4th International Symposium on Voronoi Diagrams in Science and Engineering, pp. 230–239. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  71. Zhang, Y., Springel, V., Yang, X.: Genus Statistics Using the Delaunay Tessellation Field Estimation Method. I. Tests with the Millennium Simulation and the SDSS DR7. Astrophys. J. 722, 812–824 (2010)

    Article  Google Scholar 

  72. Zomorodian, A.: Topology for Computing. Cambr. Mon. Appl. Comp. Math., Cambr. Univ. Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van de Weygaert, R. et al. (2011). Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds) Transactions on Computational Science XIV. Lecture Notes in Computer Science, vol 6970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25249-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25249-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25248-8

  • Online ISBN: 978-3-642-25249-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics