Skip to main content

Abstract

Routing is a fundamental network primitive in any wireless network. Given typical transmit power constraints, it is very unlikely that all nodes in a network are within the transmit range of one another. For this reason, many messages may have to be relayed towards their destination through multiple hops. Other than the clear advantages this strategy brings about in terms of connectivity among far nodes, multihop routing generates two types of overhead: on one hand the messages get replicated throughout the network, as multiple nodes relay the original transmission; on the other hand, the decisions about which node should be a relay require some sort of signalling before routing actually takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urick R (1983) Principles of underwater sound. McGraw-Hill, NewYork

    Google Scholar 

  2. Porto A, Stojanovic M (2007) Optimizing the transmission range in an underwater acoustic network. In: Proceedigs MTS/IEEE Oceans, IEEE, Vancouver, BC, Canada

    Google Scholar 

  3. Zorzi M, Casari P, Baldo N, Harris A (2008) Energy-efficient routing schemes for underwater acoustic networks. IEEE J Selected Areas in Comm 26(9):1754–1766

    Article  Google Scholar 

  4. Perkins C, Belding-Royer E, Das S. Ad hoc on-demand distance vector (AODV) routing. http://www.ietf.org/rfc/rfc3561.txt IETF RFC

  5. Johnson DB, Maltz AM (1996) Mobile Computing. Kluwer Academic Publishers

    Google Scholar 

  6. Clausen T, Jacquet P Optimized link state routing protocol (OLSR) http://tools.ietf.org/html/rfc3626 IETF RFC

  7. Perkins CE, Bhagwat P (1994) Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Comput Commun Rev 24(4):234–244

    Article  Google Scholar 

  8. Mbarushimana C, Shahrabi A (2007) Comparative study of reactive and proactive routing protocols performance in mobile ad hoc networks. In: Proceedings of AINAW

    Google Scholar 

  9. Casari P, Nati M, Petrioli C, Zorzi M (2007) Efficient non-planar routing around dead ends in sparse topologies using random forwarding. In: Proceedings of IEEE ICC, Glasgow, Scotland

    Google Scholar 

  10. Ratnasamy S, Karp B, Yin Li, Yu F, Estrin D, Govindan R, Shenker S (2002) GHT: a geographic hash table for data-centric storage. In: Proceedings of ACM WSNA, Atlanta, GA, USA

    Google Scholar 

  11. Rao A, Ratnasamy S, Papadimitriou C, Shenker S, Stoica I (2003) Geographic routing without location information. In: Proceedings of ACM MobiCom, San Diego, CA, USA

    Google Scholar 

  12. Casari P, Harris AF (2007) III Energy-efficient reliable broadcast in underwater acoustic networks. In: Proceedings of ACM WUWNet, Montréal, QC, Canada

    Google Scholar 

  13. Casari P, Rossi M, Zorzi M (2008) Towards optimal broadcasting policies for HARQ based on fountain codes in underwater networks. In: Proceedings of IEEE/IFIP WONS Garmisch-Partenkirchen, Germany, pp 11–19

    Google Scholar 

  14. Casari P, Rossi M, Zorzi M (2008) Fountain codes and their application to broadcasting in underwater networks: Performance modeling and relevant tradeoffs. In: Proceedings of ACM WUWNet, San Francisco, CA, USA

    Google Scholar 

  15. Nicopolitidis P, Papadimitriou GI, Pomportsis AS (2010) Adaptive data broadcasting in underwater wireless networks. IEEE J Ocean Eng 35(3):623–634

    Article  Google Scholar 

  16. Mirza D, Lu F, Schurgers C (2009) Efficient broadcast MAC for underwater networks. In: Procedings of ACM WUWNet, Berkeley, CA, USA

    Google Scholar 

  17. Zou L, Lu M, Xiong Z (2005) PAGER: A distributed algorithm for the dead-end problem of location-based routing in sensor networks. IEEE Trans Vehicular Technol 55:1509–1522

    Article  Google Scholar 

  18. Burgess J, Gallagher B, Jensen D, Levine BN (2006) MaxProp: routing for vehicle-based disruption-tolerant networks. In: Proceedings of IEEE InfoCom. IEEE

    Google Scholar 

  19. Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein D (2002) Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet. In: Proceedings of ASPLOS, San Jose, CA, USA, pp 96–107

    Google Scholar 

  20. Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, Scott J (2007) Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans Mobile Comput 6(6):606–620

    Article  Google Scholar 

  21. Vahdat A, Becker D (2000) Epidemic routing for partially connected ad hoc networks. Technical Report CS-2006-06. Department of Computer Science, Duke University

    Google Scholar 

  22. Jain S, Fall K, Patra R (2004) Routing in a delay-tolerant network. In: Proceedings of ACM SIGCOMM, Portland, OR, USA, pp 145–148

    Google Scholar 

  23. Jea D, Somasundara A, Srivastava M (2005) Multiple controlled mobile elements (data mules) for data collection in sensor networks, chapter in “Distributed computing in sensor systems”. Lecture Notes in Computer Science, Springer, vol 3560, pp 244–257

    Google Scholar 

  24. Shah RC, Roy S, Jain S, Brunette W (2003) Data mules: Modeling a three-tier architecture for sparse sensor networks. In: Proceedings of IEEE WSNPA, Anchorage, AK, USA, pp 30–41

    Google Scholar 

  25. Balasubramanian A, Levine BN, Venkataramani A (2007) DTN routing as a resource allocation problem. In: Proceedings of ACM SIGCOMM, ACM, pp 373–384

    Google Scholar 

  26. Spyropoulos T, Psounis K, Raghavendra CS (2005) Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of ACM SIGCOMM workshop on delay-tolerant networking. pp 252–259

    Google Scholar 

  27. Spyropoulos T, Psounis K, Raghavendra CS (2007) Spray and focus: efficient mobility-assisted routing for heterogeneous and correlated mobility. In: Proceedings of IEEE PerCom, White Plains, NY, USA, pp 79–85

    Google Scholar 

  28. Nelson SC, Harris AF, Kravets R (2007) Event-driven, role-based mobility in disaster recovery networks. In: Proceedings of ACM CHANTS, Montréal, QC, Canada, pp 27–34

    Google Scholar 

  29. Henriksson D, Abdelzaher TF, Ganti R (2007) A caching-based approach to routing in delay-tolerant networks. In: Proceedings of ICCCN, Honolulu, HI, USA, pp 69–74

    Google Scholar 

  30. Xie GG, Gibson JH (2001) A network layer protocol for UANs to address propagation delay induced performance limitations. In: Proceedings of MTS/IEEE OCEANS, Honolulu, HI, USA, pp 2087–2094

    Google Scholar 

  31. Ong CW (2008) A discovery process for initializing ad hoc underwater acoustic networks. Master’s thesis, Naval Postgraduate School, Monterey, CA

    Google Scholar 

  32. Rustad H (2009) A lightweight protocol suite for underwater communication. In: Proceedings of 2009 international conference on advanced information networking and applications (workshops), Bradford, UK, pp 1172–1177

    Google Scholar 

  33. Pompili D, Melodia T (2005) Three-dimensional routing in underwater acoustic sensor networks. In: Proceedings of ACM PE-WASUN, Montréal, QC, Canada

    Google Scholar 

  34. Xie P, Cui JH, Lao L (2005) VBF: vector-based forwarding protocol for underwater sensor networks. In: Proceedings of IFIP Networking, Waterloo, ON, Canada

    Google Scholar 

  35. Nicolaou N, See A, Cui JH, Maggiorini D (2007) Improving the robustness of location-based routing for underwater sensor networks. In: Proceedings of MTS/IEEE OCEANS. IEEE

    Google Scholar 

  36. Jornet JM, Stojanovic M, Zorzi M (2010) On joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks, IEEE Journal of Oceanic Engineering 35(4):936–947

    Google Scholar 

  37. Yan H, Shi Z, Cui JH (2008) DBR: Depth-based routing for underwater sensor networks. In: Proceedings of IFIP Networking’08

    Google Scholar 

  38. Vieira FML, Lee U, Gerla M (2008) Phero-trail: A bio-inspired location service for mobile underwater sensor networks. IEEE Journal on Selected Areas in Communications 28(4):553–563

    Google Scholar 

  39. Lee U, Wang P, Noh Y, Vieira FML, Gerla M, Cui JH (2010) Pressure routing for underwater sensor networks. In: Proceedings of IEEE InfoCom, San Diego, CA, USA, pp 1676–1684

    Google Scholar 

  40. Lindgren A, Doria A, Schéln O (2003) Probabilistic routing in intermittently connected networks. In: Proceedings of ACM MobiCom, San Diego, CA, USA

    Google Scholar 

  41. Lindgren A, Doria A, Davies E, Grasic S (2010) Probabilistic routing protocol for intermittently connected networks http://tools.ietf.org/html/draft-irtf-dtnrg-prophet-07 IETF Internet Draft

  42. Groenevelt R, Nain P, Koole G (2005) The message delay in mobile ad hoc networks. Perform Eval 62(1–4):218–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roald Otnes .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The authors

About this chapter

Cite this chapter

Otnes, R. et al. (2012). Routing. In: Underwater Acoustic Networking Techniques. SpringerBriefs in Electrical and Computer Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25224-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25224-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25223-5

  • Online ISBN: 978-3-642-25224-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics