Skip to main content

On the Stability of Positive Difference Equations

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 423))

Abstract

In this chapter, we are interested with stability of linear continuous-time difference equations. These equations involve delays, which can be non commensurable. Spectrum analysis comes down to the zeros analysis of an exponential polynomial. From previous results on stability dependent or independent of delays, we focus on the particular case of positive difference equations. It is proved that the stability of linear difference equations with positive coefficients is robust with respect to variations of the delays, and are given exponential bounds for the solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Avellar, C.E., Hale, J.K.: On the zeros of exponential polynomials. J. Mathematical Analysis and Applications 73, 434–452 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and linearity: An algebra for discrete event systems. John Wiley & Sons, Chichester (1992)

    MATH  Google Scholar 

  3. Barman, J.F., Callier, F.M., Desoer, C.: L 2-stability and L 2-instability of linear time invariant distributed feedback systems perturbed by a small delay in the loop. IEEE Transactions on Automatic Control 18, 479–484 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R., Cooke, K.L.: Differential-difference equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  5. Desoer, C.A., Vidyasagar, M.: Feedback systems: Input-output properties. Academic Press, New York (1975)

    MATH  Google Scholar 

  6. Hale, J.K.: Stability, control and small delays. In: Proceedings IFAC Workshop on Time Delay Systems, pp. 37–42. Pergamon (2001)

    Google Scholar 

  7. Hale, J.K., Verduyn Lunel, S.M.: Effects of small delays on stability and control. In: Bart, H., Gohberg, I., Ran, A.C.M. (eds.) Operator Theory and Analysis, The M.A. Kaashoek Anniversary Volume. Operator Theory: Advances and Applications 122, pp. 275–301. Birkhauser (2001)

    Google Scholar 

  8. Kolmanovski, V., Myshkis, A.: Applied theory of functional differential equations. Springer, New York (1993)

    Google Scholar 

  9. Le Boudec, J.-Y., Thiran, P.: Chapter 1: Network calculus. In: Thiran, P., Le Boudec, J.-Y. (eds.) Network Calculus. LNCS, vol. 2050, pp. 3–81. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Libeaut, L.: Sur l’utilisation des dioïdes pour la commande des systèmes à événements discrets, Ph.D. thesis, Ecole Centrale de Nantes (1996)

    Google Scholar 

  11. Logemann, H., Townley, S.: The effect of small delays in the feedback loop on the stability of neutral equations. Systems & Control Letters 27, 267–274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Loiseau, J.J., Cardelli, M., Dusser, X.: Neutral-type time-delay systems that are not formally stable are not BIBO stabilizable. IMA Journal of Mathematical Control and Information 19, 217–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meinsma, G., Fu, M., Iwasaki, T.: Robustness of the stability of feedback systems with respect to small time delays. Systems & Control Letters 36, 131–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Michiels, W., Engelborghs, K., Roose, D., Dochain, D.: Sensitivity to infinitesimal delays in neutral equations. SIAM Journal on Control and Optimization 40(4), 1134–1158 (2002)

    Article  MathSciNet  Google Scholar 

  15. Michiels, W., Vyhlídal, T.: An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type. Automatica 41, 991–998 (2005)

    Article  MATH  Google Scholar 

  16. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. In: Applied Mathematical Sciences, vol. 99, Springer, Heidelberg (1993)

    Google Scholar 

  17. Strikwerda, J.C.: Finite difference schemes and partial differential equations. Wadworth & Brooks, Cole (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Di Loreto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Di Loreto, M., Loiseau, J.J. (2012). On the Stability of Positive Difference Equations. In: Sipahi, R., Vyhlídal, T., Niculescu, SI., Pepe, P. (eds) Time Delay Systems: Methods, Applications and New Trends. Lecture Notes in Control and Information Sciences, vol 423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25221-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25221-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25220-4

  • Online ISBN: 978-3-642-25221-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics