Skip to main content

The Inner World of Models and Its Epistemic Diversity: Infectious Disease and Climate Modelling

  • Chapter
  • First Online:
Book cover Ways of Thinking, Ways of Seeing

Part of the book series: Automation, Collaboration, & E-Services ((ACES,volume 1))

Abstract

Modelling and simulation techniques have various functions in scientific research. They may be used as measuring devices, tools, representations or experiments, or they may be regarded as ‘artificial nature’ that allows further investigation of a particular phenomenon. However, these functions vary according to the dominant field of research. Applied science, engineering and technology-driven applications develop and utilise modelling and simulation techniques in a unique way. For policy-driven research questions, the main interest extends beyond chains of plausible scientific inference. We will highlight this by characterising the unique aspect of modelling and simulation techniques, an epistemic diversity that is derived from the ‘inner world of models’, but which has implications for the applicability of the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auranen, K.: On Bayesian Modelling of Recurrent Infections, Rolf Nevanlinna Institute, Faculty of Science. University of Helsinki, Helsinki (1999)

    Google Scholar 

  • Auranen, K., Ranta, J., et al.: A statistical model of transmission of Hib bacteria in a family. Statistics in Medicine 15(20), 2235–2252 (1996)

    Article  Google Scholar 

  • Backus, J.: Programming in America in the 1950s –Some Personal Impressions. In: Metropolis, N., Howlett, J., Rotta, G.C. (eds.) A History of Computing in the Twentieth Century, pp. 125–135. Academic Press, New York (1980)

    Google Scholar 

  • Bigg, E.K.: The supercooling of water. Proceedings of the Royal Society of London B 66(688), 688–694 (1953)

    Google Scholar 

  • Bjerknes, V.: Das Problem der Wettervorhersage, betrachtet von Standpunkt der Mechanik und Physik. Meteorologische Zeitschrift 21(1), 1–7 (1904)

    Google Scholar 

  • Boumans, M.: Built-in justification. In: Morgan, M., Morrison, M. (eds.) Models as Mediators, pp. 66–96. Cambridge University Press, Cambridge (1999)

    Chapter  Google Scholar 

  • Boumans, M.: The Reliability of an Instrument. Social Epistemology 18(2-3), 215–246 (2004)

    Article  Google Scholar 

  • Charney, J.G., Fjørtof, J., von Neumann, J.: Numerical Integration of the Barotropic Vorticity Equation. Tellus 2(4), 237–254 (1950)

    Article  MathSciNet  Google Scholar 

  • Dear, P.: Disciplines & Experience. The Mathematical Way in the Scientific Revolution. Chicago University Press, Chicago (1995)

    Google Scholar 

  • Daley, D., Gani, J.: Epidemic Modelling. An Introduction. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Dowling, D.C.: Experiments on Theories: the construction of scientific computer simulation. University of Melbourne, Melbourne (1998)

    Google Scholar 

  • ECHAM5, cloud.f90 file. Max Planck Institute for Meteorology, Hamburg (2005)

    Google Scholar 

  • Fleck, L.: The Genesis and Development of a Scientific Fact. University of Chicago Press, Chicago (1979)

    Google Scholar 

  • Edwards, P.N.: A Brief History of Atmospheric General Circulation Modeling. In: Randall, D.A. (ed.) General Circulation Model Development, pp. 67–90. Academic Press, San Diego (2000)

    Google Scholar 

  • GCSS GEWEX Cloud System Study (2011), http://www.gewex.org/gcss.html (accessed June 20, 2011)

  • Gramelsberger, G.: Story Telling with Code – Archaeology of Climate Modelling. TeamEthno–Online 2, 77–84 (2006), http://www.teamethno-online/Issue2/ (accessed June 20, 2011)

    Google Scholar 

  • Gramelsberger, G.: Conceiving meteorology as the exact science of the atmosphere –Vilhelm Bjerknes revolutionary paper from 1904. Meteorologische Zeitschrift 18(6), 663–667 (2009)

    Article  Google Scholar 

  • Gramelsberger, G.: Computerexperimente. Wandel der Wissenschaften im Zeitalter des Computers. Transcript, Bielefeld (2010)

    Google Scholar 

  • Gramelsberger, G.: What do numerical models really represent? Studies in History and Philosophy of Science 42(2), 296–302 (2011)

    Article  Google Scholar 

  • Gramelsberger, G., Feichter, J.: Climate Change and Policy – The Calculability of Climate Change and the Challenge of Uncertainty. Springer, Heidelberg (2011)

    Google Scholar 

  • Habbema, J.D., De Vlas, S.J., et al.: The microsimulation approach to epidemiologic modeling of helminthic infections, with special reference to schistosomiasis. American Journal of Tropical Medicine and Hygiene 55(5), 165–169 (1996)

    Google Scholar 

  • Hamer, W.H.: Epidemic Disease in England. The Lancet 1, 733–739 (1906)

    Google Scholar 

  • Hartmann, S.: The World as a Process. In: Hegselmann, R., Müller, U., Troitzsch, K.G. (eds.) Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View, pp. 77–100. Kluwer Academics Publisher, Dordrecht (1996)

    Google Scholar 

  • Humphreys, P.: Extending Ourselves. Computational Sciences, Empiricism, and Scientific Method. Oxford University Press, Oxford (2004)

    Google Scholar 

  • Hurst, C.J., Murphy, P.A.: The transmission and prevention of infectious disease. In: Hurst, C.J. (ed.) Modeling Disease Transmission and its Prevention by Disinfection, pp. 3–54. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  • IPCC, Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties. Intergovernmental Panel on Climate Change, Geneva (2005)

    Google Scholar 

  • IPCC, Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Kermack, W.O., McKendrick, A.G.: A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A 115(772), 700–721 (1927)

    Article  MATH  Google Scholar 

  • Kessler, E.: On the distribution and continuity of water substance on atmospheric circulation. Meteorological Monographs 10(32), 84–102 (1969)

    Google Scholar 

  • Küppers, G., Lenhard, J.: Computersimulationen: Modellierungen zweiter Ordnung. Journal for General Philosophy of Science 39(2), 305–329 (2005)

    Google Scholar 

  • Lohmann, U., Roeckner, E.: Design and performance of a new cloud microphysics parameterization developed for the ECHAM4 general circulation model. Climate Dynamics 12(8), 557–572 (1996)

    Article  Google Scholar 

  • Manabe, S., Smagorinsky, J., Strickler, R.F.: Simulated climatology of a general circulation model with a hydrological cycle. Monthly Weather Review 93(12), 769–798 (1965)

    Article  Google Scholar 

  • Mansnerus, E.: The lives of facts in mathematical models: a story of population-level disease transmission of Haemophilusinfluenzae type b bacteria. BioSocieties 4(2-3), 207–222 (2009)

    Article  Google Scholar 

  • Mansnerus, E.: Using models to keep us healthy: Productive Journeys of Facts across Public Health Networks. In: Howlett, P., Morgan, M. (eds.) How Well Do ‘Facts’ Travel? Dissemination of Reliable Knowledge, pp. 376–402. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Mansnerus, E.: Explanatory and predictive functions of simulation modelling: Case: Haemophilus Influenzae type b dynamic transmission models. In: Gramelsberger, G. (ed.) From Science to Computational Sciences. Studies in the History of Computing and Its Influence on Today’s Sciences, pp. 177–194. Diaphanes, Zurich (2011)

    Google Scholar 

  • Marshall, J.S., Palmer, W.M.: The distribution of raindrops with size. Journal of Meteorology 5, 165–166 (1948)

    Article  Google Scholar 

  • Mattila, E.: Struggle between specificity and generality: How do infectious disease models become a simulation platform? In: Küppers, G., Lenhard, J., Shinn, T. (eds.) Simulation: Pragmatic Constructions of Reality. Sociology of the Sciences Yearbook, vol. 25, pp. 125–138. Springer, Dordrecht (2006a)

    Google Scholar 

  • Mattila, E.: Interdisciplinarity ‘In the Making’: Modelling Infectious Diseases. Perspectives on Science: Historical, Philosophical, Sociological 13(4), 531–553 (2006b)

    Google Scholar 

  • Mattila, E.: Questions to Artificial Nature: a Philosophical Study of Interdisciplinary Models and their Functions in Scientific Practice. Philosophical Studies from the University of Helsinki, vol. 14. Dark oy, Helsinki (2006c)

    Google Scholar 

  • Merz, M.: Multiplex and Unfolding: Computer Simulation in Particle Physics. Science in Context 12(2), 293–316 (1999)

    Article  MathSciNet  Google Scholar 

  • Merz, M.: Kontrolle – Widerstand – Ermächtigung: Wie Simulationssoftware Physiker konfiguriert. In: Rammert, W., Schulz-Schaeffer, I. (eds.) Können Maschinen handeln? Soziologische Beiträge zum Verhältnis von Mensch und Technik, pp. 267–290. Campus, Frankfurt (2002)

    Google Scholar 

  • Morgan, M., Morrison, M.: Models as Mediators. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  • Morgan, M.: Models, Stories and the Economic World. Journal of Economic Methodology 8(3), 361–384 (2001)

    Article  Google Scholar 

  • Mäkelä, P.H., Käyhty, H., et al.: Long-term persistence of immunity after immunisation with Haemophilusinfluenzae type b conjugate vaccine. Vaccine 22(2), 287–292 (2003)

    Article  Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., et al.: Verification, validation and confirmation of numerical models in earth sciences. Science 263(5147), 641–646 (1994)

    Article  Google Scholar 

  • Petersen, A.C.: Simulating Nature: A Philosophical Study of Computer-Simulation Uncertainties and Their Role in Climate Science and Policy Advice. Het Spinhuis Publishers, Apeldoorn (2006)

    Google Scholar 

  • Phillips, N.: The Start of Numerical Weather Prediction in the United States. In: Spekat, A. (ed.) 50 Years Numerical Weather Prediction, pp. 13–28. Deutsche Meteorologische Gesellschaft, Berlin (2000)

    Google Scholar 

  • Roeckner, E., et al.: The Atmospheric General Circulation Model ECHAM5. Model description. Report No. 349. Max Planck Institute for Meteorology, Hamburg (2003), http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf (accessed June 20, 2011)

  • Rohrlich, F.: Computer Simulation in the Physical Sciences. In: Fine, A., Frobes, M., Wessels, L. (eds.) Proceedings of the 1990 Biennial Meetings of the Philosophy of Science Association, PSA 1990, pp. 507–518. Philosophy of Science Association, East Lansing (1991)

    Google Scholar 

  • Simon, H.: The Sciences of the Artificial, 3rd edn. The MIT Press, Cambridge (1996)

    Google Scholar 

  • Sismondo, S.: Editor´s Introduction: Models, Simulations, and their Objects. In: Sismondo, S., Gissis, G. (eds.) Science in Context, vol. 12(2), pp. 247–260 (1999)

    Google Scholar 

  • Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91(3), 99–164 (1963)

    Article  Google Scholar 

  • Soper, H.E.: The Interpretation of Periodicity in Disease Prevalence. Journal of the Royal Statistical Society 92(1), 34–72 (1929)

    Article  Google Scholar 

  • Storelvmo, T., Kristjánsson, J.E., et al.: Modeling of the Wegener–Bergeron–Findeisen process – implications for aerosol indirect effects. Environmental Research Letters 3(045001), 1–10 (2008)

    Google Scholar 

  • Sundqvist, H.: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quarterly Journal of the Royal Meteorological Society 104(441), 677–690 (1978)

    Article  Google Scholar 

  • Sundqvist, H., Berge, E., Kristjansson, J.E.: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Monthly Weather Review 117(8), 1641–1657 (1989)

    Article  Google Scholar 

  • Suppes, F.: A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences. Synthese 12(2/3), 287–301 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Thiedeke, M.: Representations of Clouds in Large-Scale Models. Monthly Weather Review 121(11), 3040–3061 (1993)

    Article  Google Scholar 

  • van Fraassen, B.: The Scientific Image. Clarendon Press, Oxford (1980)

    Book  Google Scholar 

  • Winsberg, E.: Sanctioning Models: The Epistemology of Simulation. Science in Context 12(2), 275–292 (1999)

    Article  Google Scholar 

  • Winsberg, E.: Simulations, Models and Theories: Complex Physical Systems and Their Representations. Philosophy of Science 68(3), S442–S454 (2001)

    Article  Google Scholar 

  • Winsberg, E.: Computer Simulation and the Philosophy of Science. Philosophy Compass 4(5), 835–845 (2009)

    Article  Google Scholar 

  • Woodward, J.: Making Things Happen: a Theory of Causal Explanation. Oxford University Press, Oxford (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Gramelsberger, G., Mansnerus, E. (2012). The Inner World of Models and Its Epistemic Diversity: Infectious Disease and Climate Modelling. In: Bissell, C., Dillon, C. (eds) Ways of Thinking, Ways of Seeing. Automation, Collaboration, & E-Services, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25209-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25209-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25208-2

  • Online ISBN: 978-3-642-25209-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics