Skip to main content

Technologies for Balancing Electrical Energy and Power

  • Chapter
  • First Online:
Balancing Renewable Electricity

Abstract

Having discussed the need for balancing electrical energy and power with additional technologies that can provide load adaption, transport of electricity from abroad, or storage of electricity, the following chapter provides an overview of technological options. Section 5.1 develops a classification scheme. Individual technologies are discussed in Sects. 5.2, 5.3 and 5.4, following the differentiation of “storage” technologies providing ways from “electricity to electricity”, “electricity to anything” and “anything to electricity”. Section 5.5 summarises options for demand response and demand-side management, including the bundling of individual technologies. The analysis in Sect. 5.6 reveals the life cycle costs of individual storage technologies. These are discussed in the context of different specific tasks involved in balancing energy and power. A central requirement for a system with a high penetration of renewable electricity suppliers and balancing capabilities is the viability of various technologies. Therefore, Sect. 5.7 analyses, to the extent possible, the future viability of relevant technologies. The environmental effects, resource use and system characteristics according to the indicators derived in Sect. 2.2 are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From a systematic point of view, the solvent is not the electrolyte (even though these terms are used frequently). The function of an electrolyte is to couple the electrodes of an electrochemical system as an ion conductor and at the same time as an insulator for electrons. In redox-flow batteries this is the membrane in the stack that separates the liquid active materials of the positive and the negative electrode.

  2. 2.

    In the framework of the E-DeMa project, more detailed findings on this are expected, based on the experiences of a 9-month field test in 2012.

  3. 3.

    “New Energy Externalities Development for Sustainability” – intergrated project funded by the European Commission in the sixth framework programme.

  4. 4.

    If not differently indicated, the base year 2000 is used for the evaluation of environmental effects.

  5. 5.

    In order to project costs from today to 2050, the growth rate of GDP is assumed to be 2% until 2030 and 1% thereafter, with an income elasticity of 0.85.

  6. 6.

    As no other data are available, for the NiMH battery a dataset for 1 kg of notebook batteries is taken from ecoinvent 2.2.

  7. 7.

    The NiMH battery technology has been left out here because it is not as relevant as the options of lead-acid and lithium-ion batteries and would dominate the results.

  8. 8.

    This depends on the amount of cobalt required for the specific type of Li-ion battery.

References

  • Aul R, Rittmeyer P (2011) Lithium availability – meeting tomorrow’s demand. Chemetall, Presentation at Batterietag NRW 2011, Aachen, 28 Feb 2011

    Google Scholar 

  • Aundrup T, Benz T, Dörnemann C, Fischer W, Gehlen C, Glaunsinger W, Hellmuth H, Kreusel J, Menke P, Neumaier R, Rehtanz C, Schomberg A, Schwippe J (2010) Übertragung elektrischer Energie, Positionspapier der Energietechnischen Gesellschaft im VDE (ETG). VDE, Frankfurt am Main

    Google Scholar 

  • BGH (2008) Judgement of 18.07.2007 (file no. VIII ZR 288/05). Bundesgerichtshof (BGH), Recht der Energiewirtschaft 2008:19–21

    Google Scholar 

  • BMU (2007) The integrated energy and climate programme of the German government. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU). www.bmu.de/files/pdfs/allgemein/application/pdf/hintergrund_meseberg_en.pdf. Accessed 30 Nov 2010

    Google Scholar 

  • Cavoukian A, Polonetsky J, Wolf C (2010) Smart privacy for the smart grid. Identity Inf Soc 3:275–294

    Article  Google Scholar 

  • Diederen P, Kemp R, Verberne P, Ziesemer T, van Zon A (1995) Energy technologies, environmental policy and competitiveness. Final report for the JOULE II program of the European Commission

    Google Scholar 

  • Droste-Franke B (2005) Quantifizierung von Umweltschäden als Beitrag zu Umweltökonomischen Gesamtrechnungen. Dissertation, Universität Stuttgart, Stuttgart

    Google Scholar 

  • EEA (2010) EU27 net imports of natural Gas, Oil, Solid Fuels. European Environment Agency (EEA). www.eea.europa.eu/data-and-maps/figures/eu27-net-imports-of-natural

    Google Scholar 

  • Ethik-Kommission (2011) Deutschlands Energiewende – ein Gemeinschaftswerk für die Zukunft. Ethik-Kommission Sichere Energieversorgung, Berlin

    Google Scholar 

  • European Commission (2008b) New energy externalities development for sustainability (NEEDS), Final reports. Integrated Project NEEDS, project no. 502687, Sixth Framework Programme, Brussels, www.needs-project.org

    Google Scholar 

  • Golombek R, Greaker M, Kittelsen SAC, Røgeberg O, Aune FR (2009) Carbon capture and storage technologies in the European power market. Statistics Norway Research Department Discussion Papers No. 603, December

    Google Scholar 

  • Grunwald A (1999) Transdisziplinäre Umweltforschung: Methodische Probleme der Qualitätssicherung. TA-Datenbank-Nachrichten 8(3/4):32–39

    Google Scholar 

  • IAEA (2005) Energy indicators for sustainable development, Guidelines and methodologies. International Atomic Energy Agency, United Nations Department of Economic and Social Affairs, International Energy Agency, Eurostat, European Environment Agency, Vienna

    Google Scholar 

  • Knies G (2006) Global energy and climate security through solar power from deserts. Trans-Mediterranean Renewable Energy Cooperation, TREC In co-operation with The Club of Rome. www.desertec.org/downloads/deserts_en.pdf. 25 Aug 2011)

    Google Scholar 

  • Krewitt W, Schlomann B (2006) Externe Kosten der Stromerzeugung aus erneuerbaren Energien im Vergleich zur Stromerzeugung aus fossilen Energieträgern. Gutachten im Auftrag des BMU, Stuttgart

    Google Scholar 

  • Krewitt W, Simon S, Graus W, Teske S, Zervos A, Schäfer O (2007) The 2°C scenario – a sustainable world energy perspective. Energy Policy 35:4969–4980

    Article  Google Scholar 

  • Madlener R, Wenk C (2008) Efficient investment portfolios for the Swiss electricity supply Sector. FCN Working Papers 2/2008

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MATH  Google Scholar 

  • Nitsch J, Wenzel B (2009) Langfristszenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland unter Berücksichtigung der europäischen und globalen Entwicklung, Leitszenario 2009. Untersuchung im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin

    Google Scholar 

  • Nutzinger HG, Radke V (1995) Das Konzept der nachhaltigen Wirtschaftsweise. In: Nutzinger HG (ed) Nachhaltige Wirtschaftsweise und Energieversorgung, Konzepte, Bedingungen, Ansatzpunkte. Metropolis-Verlag, Marburg

    Google Scholar 

  • PwC, PIK, IIASA, ECF (2010) 100% renewable electricity. A roadmap to 2050 for Europe and North Africa. PricewaterhouseCoopers LLP (PwC), Potsdam Institute for Climate Impact Research (PIK), International Institute for Applied Systems Analysis (IIASA), European Climate Forum (ECF). www.pwc.co.uk/pdf/100_percent_renewable_electricity.pdf. Accessed 26 Aug 2011

    Google Scholar 

  • Rious V, Usaola J, Saguan M, Glachant JM, Dessante P (2008) Assessing available transfer capacity on a realistic European network: impact of assumptions on wind power generation. In: 1st international scientific conference “Building Networks for a Brighter Future”, Rotterdam, December

    Google Scholar 

  • Roßnagel A, Jandt S (2010) Datenschutzkonformes Energieinformationsnetz. DuD 34:373–378

    Article  Google Scholar 

  • Rydh CJ, Svärd B (2003) Impact on global metal flows arising from the use of portable rechargeable batteries. Sci Total Environ 302:167–184

    Article  Google Scholar 

  • Säcker FJ (2009) Netzausbau- und Kooperationsverpflichtungen der Übertragungsnetzbetreiber nach Inkrafttreten des EnLAG und der Dritten StromRL 2009/72 EG vom 13/7/2009. Recht der Energiewirtschaft 9:305

    Google Scholar 

  • Steger U, Büdenbender U, Feess E, Nelles D (2008) Die Regulierung elektrischer Netze. Offene Fragen und Lösungsansätze, vol 32, Ethics of science and technology assessment. Springer, Berlin

    Google Scholar 

  • Tarrasón L (2009) Report on deliveries of source-receptor matrices with the regional EMEP Unified model. Deliverable 1.2 RS1b, IP NEEDS, project no. 502687, Sixth framework programme, Brussels

    Google Scholar 

  • Theobald C (2011) §1. Grundlagen des deutschen Rechts der Energiewirtschaf. In: Schneider J-P, Theobald C (eds) Recht der Energiewirtschaft. C.H. Beck, Münche, pp 1–37

    Google Scholar 

  • Umweltbundesamt (2010) 2050: 100%. Energieziel 2050: 100% Strom aus erneuerbaren Quellen. Umweltbundesamt, Dessau-Roßlau, www.umweltdaten.de/publikationen/fpdf-l/3997.pdf. 26 Aug 2011

    Google Scholar 

  • van Alphen K, van Ruijven J, Kasa S, Hekkert M, Turkenburg W (2009) The performance of the Norwegian carbon dioxide, capture and storage innovation system. Energy Policy 37:43–55

    Article  Google Scholar 

  • Waniek D, Handschin E, Häger U, Rehtanz C (2008) Influences of wind energy on the operation of transmission systems. In: Proceedings of the IEE power & energy society general meeting, Pittsburgh, pp 1–8

    Google Scholar 

  • Wikipedia (2011) Automobile. Wikipedia: http://en.wikipedia.org/wiki/Automobile

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Droste-Franke .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Droste-Franke, B. et al. (2012). Technologies for Balancing Electrical Energy and Power. In: Balancing Renewable Electricity. Ethics of Science and Technology Assessment, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25157-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25157-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25156-6

  • Online ISBN: 978-3-642-25157-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics