Skip to main content

PET-CT in Bone and Joint Diseases

  • Chapter
  • First Online:
  • 1589 Accesses

Abstract

Except for acute trauma such as fracture, contusion or sprain, and physical injury such as electric or thermal burn or freezing, the damage to cells in disease starts at the molecular or chemical level followed by anatomical response. Accordingly, a truly early diagnosis of a disease requires an appropriate means to detect preanatomical change, and PET is a modality that meets this requirement. PET, the latest high technology nuclear imaging modality, has been shown to be a potent tool for the imaging of early metabolic change and simultaneous quantitative assessment of the change, and is widely used in many economically developed countries. Its indications include the diagnosis, staging and restaging, therapy planning, assessment of therapeutic effects, recurrence monitoring, and prognostication of neoplastic conditions and inflammations. Until recently, PET suffered from a crucial inherent problem of inaccuracy in localizing detected lesions because of suboptimal anatomical information. The problem, however, has been successfully overcome by hybridizing PET with CT. In addition, the production and distribution of special radiopharmaceuticals have also become tremendously improved so that they are now available without major difficulty in everyday practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References


  • Alavi A, Zhuang H (2003) PET imaging in infectious diseases. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice, 1st edn. Springer, London


    Google Scholar 

  • Aoki J, Watanabe H, Shinozaki T, et al (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777


    PubMed  CAS  Google Scholar 

  • Beckers C, Ribbens C, André B, et al (2004) Assessment of disease activity in rheumatoid arthritis with 18F-FDG PET. J Nucl Med 45:956–964


    PubMed  CAS  Google Scholar 

  • Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334


    PubMed  CAS  Google Scholar 

  • Brenner W, Bohuslavizki KH, Eary JF (2003) PET imaging of osteosarcoma. J Nucl Med 44:930–942


    PubMed  Google Scholar 

  • Brenner W, Conrad EU, Eary JF (2004) FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging 31:189–195


    Article  PubMed  Google Scholar 

  • Bury T, Baretto A, Daenen F, et al (1998) Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 25:1244–1247


    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti R, Jung CY, Lee TP, et al (1994) Changes in glucose-transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol 152:2660–2668


    PubMed  CAS  Google Scholar 

  • Chung JK, Kim YK, Yoon JK, et al (1999) Diagnostic usefulness of F-18 FDG whole body PET in detection of bony metastases compared to Tc-99 m MDP bone scan. J Nucl Med 40:96P


    Google Scholar 

  • Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36:1625–1632


    PubMed  CAS  Google Scholar 

  • Coleman RE, Mashiter G, Whitaker KB, et al (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 29:1354–1359


    PubMed  CAS  Google Scholar 

  • Cook GJ (2002) Skeletal and soft tissue. In: Wahl RL, Buchanan JW (eds) Principles and practice of positron emission tomography, 1st edn. Lippincott Williams & Wilkins, Philadelphia


    Google Scholar 

  • Cook GJ, Houston S, Rubens R, Maisey MN, et al (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379


    PubMed  CAS  Google Scholar 

  • Cornelius P, Marlowe M, Pekala PH (1990) Regulation of glucose transport by tumor necrosis factor-α in cultured murine 3T3-L1 fibroblasts. J Trauma 30:S15– S20


    Article  PubMed  CAS  Google Scholar 

  • Daldrup-Link H, Franzius C, Link TM, et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236


    PubMed  CAS  Google Scholar 

  • de Winter F, Van de Wiele C, Vogelaers D, et al (2000) FDG PET is highly accurate in the diagnosis of chronic osteomyelitis in the central skeleton (abstract). J Nucl Med 41:57


    Google Scholar 

  • de Winter F, van de Wiele C, Vogelaers D, et al (2001) Fluorine-18 fluorodeoxyglucose-positron emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am 83:651–660


    PubMed  Google Scholar 

  • de Winter F, Vogelaers D, Gemmel F, et al (2002) Promising role of 18-F-fluoro-d-deoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 21:247–257


    Article  PubMed  CAS  Google Scholar 

  • de Winter F, Gemmel F, Van de Wiele C, et al (2003) 18-fluorine fluorodeoxyglucose positron emission tomography for the diagnosis of infection in the postoperative spine. Spine 28:1314–1319


    PubMed  Google Scholar 

  • Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop 355:S7–S21


    Google Scholar 

  • Even-Sapir E, Metser U, Flusser G, et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278


    PubMed  Google Scholar 

  • Feldmann M, Naini RN (2001) Anti-TNFa therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196


    Article  PubMed  CAS  Google Scholar 

  • Foo SS, Ramdave S, Berlangieri SU, Scott AM (2004) Detection of occult bone metastases of lung cancer with fluorine-18 fluorodeoxyglucose positron emission tomography. Australas Radiol 48:214–216


    Article  PubMed  Google Scholar 

  • Gamelli RL, Liu H, He LK, et al (1996) Augmentations of glucose uptake and glucose transporter-1 in macro-phages following thermal injury and sepsis in mice. J Leukoc Biol 59:639–647


    PubMed  CAS  Google Scholar 

  • Gratz S, Dorner J, Fischer U, et al (2002) 18F-FDG hybrid PET in patients with suspected spondylitis. Eur J Nucl Med 29:516–524


    Article  CAS  Google Scholar 

  • Guhlmann A, Brecht-Krauss D, Suger G, et al (1998) Fluorine-18-FDG PET and technetium-99 m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 39:2145–2152


    PubMed  CAS  Google Scholar 

  • Hain SF, O’Doherty MJ, Lucas JD, et al (1999) Fluorodeoxyglucose PET in the evaluation of amputations for soft tissue sarcoma. Nucl Med Commun 20:845–848


    Article  PubMed  CAS  Google Scholar 

  • Hetzel M, Arslandermir C, Konig HH, et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214


    Article  PubMed  Google Scholar 

  • Hiraga T, Mundy GR, Yoneda T (2000) Bone metastases-morphology. In: Rubins RD, Mundy GR (eds) Cancer and the skeleton. Martin Dunitz, London


    Google Scholar 

  • Jones DN, McCowage GB, Sostman HD, et al (1996) Monitoring of neoadjuvant therapy response of soft tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med 37:1438–1444


    PubMed  CAS  Google Scholar 

  • Kato E, Aoki J, Endo K (2003) Utility of FDG-PET in differential diagnosis of benign and malignant fractures in acute to subacute phase. Ann Nucl Med 17:41–46


    Article  PubMed  Google Scholar 

  • Keidar Z, Militianu D, Melamed E, et al (2005) The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med 46:444–449


    PubMed  Google Scholar 

  • Kolindou A, Liu Y, Ozker K, et al (1996) In-111 WBC imaging of osteomyelitis in patients with underlying bone scan abnormalities. Clin Nucl Med 21:183–191


    Article  PubMed  CAS  Google Scholar 

  • Koort JK, Mäkinen TJ, Knuuti J, et al (2004) Comparative 18F-FDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411


    PubMed  Google Scholar 

  • Lang CH, Bagby GJ, Dobrescu C, et al (1992) Modulation of glucose metabolic response to endotoxin by granulocyte colony-stimulating factor. Am J Physiol 263: R1122–R1129


    PubMed  CAS  Google Scholar 

  • Lee FY, Yu J, Chang SS, et al (2004) Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg Am 86:2677–2685


    PubMed  Google Scholar 

  • Lodge MA, Lucas JD, Marsden PK, et al (1999) A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 26:22–30


    Article  PubMed  CAS  Google Scholar 

  • Lucas JD, O’Doherty MJ, Cronin BF, et al (1999) Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br J Surg 86:550–556


    Article  PubMed  CAS  Google Scholar 

  • Mester U, Lerman H, Blank A, et al (2004) Malignant involvement of the spine: assessment by 18F-FDG PET/CT. J Nucl Med 45:279–284


    Google Scholar 

  • Moog F, Bangerter M, Kotzerke J, et al (1998) 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 16:603–609


    PubMed  CAS  Google Scholar 

  • Moon DH, Maddahi J, Siverman DH, et al (1998) Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 39:431–435


    PubMed  CAS  Google Scholar 

  • Mortimer JE, Dehdashti F, Siegel BA, et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803


    PubMed  CAS  Google Scholar 

  • Nelson CA, Wang JQ, Leav I, et al (1996) The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2-deoxyglucose retention in murine tumor models. Nucl Med Biol 23:533–541


    Article  PubMed  CAS  Google Scholar 

  • Rossleigh MA, Lovegrove FT, Reynolds PM, et al (1984) Assessment of response to therapy of bone metastases in breast cancer. Aust N Z J Med 14:19–22


    Article  PubMed  CAS  Google Scholar 

  • Schirrmeister H, Guhlmann A, Kotzerke J, et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629


    PubMed  CAS  Google Scholar 

  • Schmitz A, Risse JH, Textor J, et al (2002) FDG-PET findings of vertebral compression fractures in osteoporosis: preliminary results. Osteoporos Int 13:755–761


    Article  PubMed  Google Scholar 

  • Schulte M, Brecht-Krauss D, Werner M, et al (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 40:1637–1643


    PubMed  CAS  Google Scholar 

  • Schulte M, Brecht-Krauss D, Heymer B, et al (2000) Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 41:1695–1701


    PubMed  CAS  Google Scholar 

  • Schwarzbach MHM, Dimitrakopoulou-Strauss A, Willeke F, et al (2000) Clinical value of [18F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg 231:380–386


    Article  PubMed  CAS  Google Scholar 

  • Shreve PD, Grossman HB, Gross MD, et al (1996) Metastatic prostatic cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199:751–756


    PubMed  CAS  Google Scholar 

  • Smith TAD (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57:170–178


    PubMed  CAS  Google Scholar 

  • Stumpe KD, Dazzi H, Schaffner A, et al (2000) Infection imaging using whole-body FDG-PET. Eur J Nucl Med 27:822–832


    Article  PubMed  CAS  Google Scholar 

  • Stumpe KD, Notzli HP, Zanetti M, et al (2004) FDG PET for differentiation of infection and aseptic loosening in total hip replacements: comparison with conventional radiography and three-phase bone scintigraphy. Radiology 231:333–341


    Article  PubMed  Google Scholar 

  • Sugawara Y, Fisher SJ, Zasadny KR, et al (1998a) Preclinical and clinical studies of bone marrow uptake of fluorine-18-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 16:173–180


    PubMed  CAS  Google Scholar 

  • Sugawara Y, Braun DK, Kison PV, et al (1998b) Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 25:1238–1243


    Article  PubMed  CAS  Google Scholar 

  • Sugawara Y, Gutowski TD, Fisher SJ, et al (1999) Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, L-methionine, 67Gacitrate, and 125I-HSA. Eur J Nucl Med 26:333–341


    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1931) The mechanism of tumors. Richard Smith, New York, pp 129–169


    Google Scholar 

  • Yamada S, Kubota K, Kubota R, et al (1995) High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 36:1301–1306


    PubMed  CAS  Google Scholar 

  • Yang SN, Liang JA, Lin FJ, et al (2002) Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol 128:325–328


    Article  PubMed  CAS  Google Scholar 

  • Yao WJ, Hoh CK, Hawkins RA, et al (1995) Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines. J Nucl Med 36:794–799


    PubMed  CAS  Google Scholar 

  • Yeh SD, Imbriaco M, Larson SM, et al (1996) Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl Med Biol 23:693–697


    Article  PubMed  CAS  Google Scholar 

  • Zhuang H, Duarte PS, Pourdehnad M, et al (2000) Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med 25:281–284


    Article  PubMed  CAS  Google Scholar 

  • Zhuang H, Duarte PS, Pourdehnad M, et al (2001) The promising role of 18F-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 42:44–48


    PubMed  CAS  Google Scholar 

  • Zhuang H, Sam JW, Chacko TK, et al (2003) Rapid normalization of osseous FDG uptake following traumatic or surgical fractures. Eur J Nucl Med 30:1096–1103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Whee Bahk .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bahk, YW., Kim, SH. (2013). PET-CT in Bone and Joint Diseases. In: Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25144-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25144-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25143-6

  • Online ISBN: 978-3-642-25144-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics