Skip to main content
  • 1639 Accesses

Abstract

Malignant bone tumors are either primary or metastatic in nature. The high sensitivity and accuracy of 99mTc-MDP bone scintigraphy in diagnosing bone metastasis were established as long ago as 1961 (Fleming et al. 1961) (Fig. 1.2). In contrast, its usefulness in the investigation of primary bone tumors, both malignant and benign, appears not to be fully appreciated. The main reason is the low diagnostic yield of conventional planar bone scintigraphy; this is true. However, recognizing the fact that the magnified images of pinhole scintigraphy can depict anatomy in amazing detail along with unique metabolic information, a number of primary tumors and tumor-like diseases of bone have become among the most important and challenging indications for bone scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References


  • Asthana S, Deo SV, Shukla NK, Raina V (2001) Carcinoma breast metastatic to the hand and the foot. Australas Radiol 45:380–382


    Article  PubMed  CAS  Google Scholar 

  • Baek JH, Lee SY, Kim SH, et al (1997) Pinhole bone scintigraphic manifestation of fibrous dysplasia. Korean J Nucl Med 31:452–458


    Google Scholar 

  • Bahk WJ, Rhee SK, Kang YK, et al (2006) Gastric cancer acrometastases to all digits of one hand following closed intramedullary nailing. Skeletal Radiol 35:529532


    Google Scholar 

  • Bahk YW (1996) Pinhole scanning in tumors and tumorous conditions of bone: a new imaging approach to skeletal radiology. J Orthop Sci 1:70–89


    Article  Google Scholar 

  • Bahk YW (1998) Pinhole scintigraphic diagnosis of bone tumors. J Korean Bone Joint Tumor Soc 4:1–12


    Google Scholar 

  • Bahk YW, Kim OH, Chung SK (1987) Pinhole collimator scintigraphy in differential diagnosis of metastasis, fracture, and infections of the spine. J Nucl Med 28:447–451


    PubMed  CAS  Google Scholar 

  • Bahk YW, Park YH, Chung SK, Chi JG (1995) Bone pathological correlation of multimodality imaging in Paget’s disease. J Nucl Med 36:1421–1426


    PubMed  CAS  Google Scholar 

  • Bourgeois P, Malarme M, Van Franck R, et al (1991) Bone marrow scintigraphy in prostatic carcinoma. Nucl Med Commun 12:35–45


    Article  PubMed  CAS  Google Scholar 

  • Bredella MA, Sreinbach L, Caputo G, et al (2005) Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol 184:1199–1204


    PubMed  Google Scholar 

  • Capanna R, Bertoni F, Bacchini P, et al (1984) Malignant fibrous histiocytoma of bone. The experience at the Rizzoli Institute: report of 90 cases. Cancer 54:177–187


    Article  PubMed  CAS  Google Scholar 

  • Citrin DL, McKillop JH (1978) Atlas of technetium bone scans. Saunders, Philadelphia


    Google Scholar 

  • Coerkamp FG, Kroon HM (1988) Cortical bone metastases. Radiology 169:525–528


    PubMed  CAS  Google Scholar 

  • Collins MS, Koyama T, Swee RG, Inwards CY (2003) Clear cell chondrosarcoma: radiographic, computed tomographic, and magnetic resonance findings in 34 patients with pathological correlation. Skeletal Radiol 32:687–694


    Article  PubMed  Google Scholar 

  • Conklin JJ, Camargo EE, Wagner H Jr (1981) Bone scan detection of peripheral periosteal leiomyoma. J Nucl Med 22:97


    Google Scholar 

  • Cook GJ, Fogelman I (2001) The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 31:206–211


    Article  PubMed  CAS  Google Scholar 

  • Cooper M, Miles KA, Wraight EP, Dixon AK (1992) Degenerative disc disease in the lumbar spine: another cause for focally reduced activity on bone marrow scintigraphy. Skeletal Radiol 21:247–249


    PubMed  CAS  Google Scholar 

  • Deutch A, Resnick D (1980) Eccentric cortical metastases to the skeleton from bronchogenic carcinoma. Radiology 137:49–52


    Google Scholar 

  • Duncker CM, Carrio I, Berna L, et al (1990) Radio-immune imaging of bone marrow in patients with suspected bone metastases from primary breast cancer. J Nucl Med 31:1450–1455


    PubMed  CAS  Google Scholar 

  • Feggi LM, Spanedda R, Scutellari PN, et al (1988) Bone marrow scintigraphy in multiple myeloma. A comparison with bone scintigraphy and skeletal radiology. Radiol Med (Torino) 76:311–315


    CAS  Google Scholar 

  • Fleming WH, McIlraith ID, King R (1961) Photo scanning of bone lesions utilizing strontium 85. Radiology 77:635–636


    PubMed  CAS  Google Scholar 

  • Focacci C, Lattanzi R, Iadeluca ML, Campioni P (1998) Nuclear medicine in primary bone tumors. Eur J Radiol 27 [Suppl 1]:S123–131


    Article  PubMed  Google Scholar 

  • Fogelman I, McKillop JH (1991) The bone scan in metastatic disease. In: Rubens RD, Fogelman I (eds) Bone metastases. Springer, Berlin Heidelberg New York


    Google Scholar 

  • Gabuniia RI, Godin VP, Gristai AA, et al (1989) Scintigraphic evaluation of the efficacy of treatment of cancer of the breast with bone metastases. Med Radiol (Mosk) 34:49–53


    CAS  Google Scholar 

  • Gilday DL, Ash JM, Reilly BJ (1977) Radionuclide skeletal survey for pediatric neoplasms. Radiology 123:399–406


    PubMed  CAS  Google Scholar 

  • Goodgold HM, Chen DCP, Majd M, et al (1984) Scintigraphic features of giant cell tumor. Clin Nucl Med 9:526–530


    Article  PubMed  CAS  Google Scholar 

  • Greenspan A, Norman A (1988) Osteolytic cortical destruction: an unusual pattern of skeletal metastases. Skeletal Radiol 17:402–406


    Article  PubMed  CAS  Google Scholar 

  • Haubold-Reuter BG, Duewell S, Schilcher BR, et al (1993) The value of bone scintigraphy, bone marrow scintigraphy and fast spin-echo magnetic resonance imaging in staging of patients with malignant solid tumours: a prospective study. Eur J Nucl Med 20:1063–1069


    Article  PubMed  CAS  Google Scholar 

  • Hudson TM (1984) Scintigraphy of aneurysmal bone cysts. AJR Am J Roentgenol 142:761–765


    PubMed  CAS  Google Scholar 

  • Kamby C, Vejborg I, Daugaard S, et al (1987) Clinical and radiological characteristics of bone metastases in breast cancer. Cancer 60:2254–2261


    Google Scholar 

  • Kim EE, Bledin AG, Gutierrez C (1983) Comparison of radionuclide images and radiographs for skeletal metastases from renal cell carcinoma. Oncology 40:284–286


    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Chung SK, Park YH, et al (1992) Pinhole bone scintigraphic appearances of osteoid osteoma. Korean J Nucl Med 26:160–163


    Google Scholar 

  • Kim SH, Chung SK, Bahk YW (1993) Pinhole scintigraphic demonstration of trabeculated photopenic metastasis from follicular thyroid carcinoma: report of two cases. Korean J Nucl Med 27:305–308


    Article  CAS  Google Scholar 

  • Kirchner PT, Simon MA (1981) Radioisotopic evaluation of skeletal disease. J Bone Joint Surg Am 63:673–681


    PubMed  CAS  Google Scholar 

  • Lee KH, Chung J-K, Choi CW, et al (1995) Technetium-99 m-labeled antigranulocytic antibody bone marrow scintigraphy. J Nucl Med 36:1800–1805


    PubMed  CAS  Google Scholar 

  • Lemieux J, Guimond J, Laberge F, et al (2002) The bone scan flare phenomenon in non-small-cell lung cancer. Clin Nucl Med 27:486–489


    Article  PubMed  Google Scholar 

  • Lentle BC, Kotchen T, Catz Z, Penney HF (1987) Detecting bone marrow metastases at the time of examining the liver with radiocolloid. J Nucl Med 28:184–187


    PubMed  CAS  Google Scholar 

  • Levine E, De Smet AA, Neff JR, et al (1984) Scintigraphic evaluation of giant cell tumor of bone. AJR Am J Roentgenol 143:343–348


    PubMed  CAS  Google Scholar 

  • Lisbona R, Rosenthall L (1979) Role of radionuclide imaging in osteoid osteoma. AJR Am J Roentgenol 132:77–80


    PubMed  CAS  Google Scholar 

  • McKillop JH (1987) Bone scanning in metastatic disease. In: Fogelman I (ed) Bone scanning in clinical practice. Springer, Berlin Heidelberg New York


    Google Scholar 

  • McLean RG, Murray IPC (1984) Scintigraphic patterns in certain primary malignant bone tumors. Clin Radiol 35:379–383


    Article  PubMed  CAS  Google Scholar 

  • Murphey MD, wan Jaovisidha S, Temple HT, et al (2003) Telangiectatic osteosarcoma: radiographic-pathologic comparison. Radiology 229:545–553


    Article  PubMed  Google Scholar 

  • Nadel HT, Rossleigh MA (1995) Tumor imaging. In: Treves ST (ed) Pediatric nuclear medicine, 2nd edn. Springer, Berlin Heidelberg New York, pp 496–527


    Google Scholar 

  • Neumann RD, Kemp JD, Weiner RE (1995) Gallium-67 imaging for detection of malignant disease. In: Sandler MP, et al (eds) Diagnostic nuclear medicine, 3rd edn. Williams and Wilkins, Baltimore, pp 1243–1260


    Google Scholar 

  • Phekoo KJ, Schey SA, Richards MA, et al (2004) A population study to define the incidence and survival of multiple myeloma in a National Health Service Region in UK. Br J Haematol 127:299–304


    Article  PubMed  CAS  Google Scholar 

  • Pinkas L, Robinson D, Halpern N, et al (2001) 99mTcMIBI scintigraphy in musculoskeletal tumors. J Nucl Med 42:33–37


    PubMed  CAS  Google Scholar 

  • Pistenma DA, McDougall IR, Kriss JP (1975) Screening for bone metastases. JAMA 255:46–50


    Article  Google Scholar 

  • Reske SN, Karstens JH, Gloeckner W, et al (1989) Radioimmunoimaging for diagnosis of bone marrow involvement in breast cancer and malignant lymphoma. Lancet 1(8633):299–301


    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Matsumura Y, Tanaka M, et al (1991) Bone metastases in breast cancer and its risk factor – follow up study by bone scintigraphy. Kaku Igaku 28:1177–1180


    PubMed  CAS  Google Scholar 

  • Wahner HW, Kyle RA,Beabout JW (1980) Scintigraphic evaluation of the skeleton in multiple myelomas. Mayo Clin Proc 55:739–746


    PubMed  CAS  Google Scholar 

  • Waxman AD (1995) Thallium-201 and technetium-99 m methoxyisobutyl isonitrile in nuclear oncology. In: Sandler MP, et al (eds) Diagnostic nuclear medicine, 3rd edn. Williams and Wilkins, Baltimore, pp 1261–1274


    Google Scholar 

  • Waxman AD, Siensen JK, Levine AM, et al (1981) Radiographic and radionuclide imaging in multiple myeloma: the role of gallium scintigraphy. J Nucl Med 22:256–260


    Google Scholar 

  • WHO, Tumors of Soft Tissue and Bone, 2002


    Google Scholar 

  • Widding A, Stilbo I, Hansen SW, et al (1990) Scintigraphy with nanocolloid Tc-99 m in patients with small cell lung cancer, with special reference to bone marrow and hepatic metastases. Eur J Nucl Med 16:717–719


    Article  PubMed  CAS  Google Scholar 

  • Yuasa K, Sugimura K, Okizuka AH, et al (1991) Bone infarction and fat island appearing as local defects in radionuclide bone marrow imaging. Kaku Igaku 28:91–96


    PubMed  CAS  Google Scholar 

  • Zeifang F, Sabo D, Ewerbeck V (2000) Pathological fractures in primary malignant bone tumors. Chirurg 71:1121–1125

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Whee Bahk .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bahk, YW., Bahk, WJ. (2013). Malignant Tumors of Bone. In: Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25144-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25144-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25143-6

  • Online ISBN: 978-3-642-25144-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics