Skip to main content

Local Nanoscopic Heterogeneities in Thermoresponsive Dendronized Polymers

  • Chapter
  • First Online:
Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 706 Accesses

Abstract

The thermal transition of thermoresponsive dendronized polymers is characterized on a molecular scale by continuous wave EPR spectroscopy. It is found to be accompanied by dynamic structural heterogeneities on the nanoscale, which trigger the aggregation of single polymer chains into mesoglobules. While macroscopically a sharp phase transition, this study reveals that the dehydration of the polymer chains proceeds over a temperature interval of at least 30 K and is a case of a molecularly controlled non-equilibrium state. While the aggregation temperature mainly depends on the periphery of the dendrons, the dehydration of the mesoglobule is governed by the hydrophobicity of the dendritic core. Heating rate dependent changes were assigned to the formation of a dense polymeric layer at the periphery of the mesoglobule, which prohibits the release of incorporated water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  2. de las Heras Alarcón C, Pennadam S, Alexander C (2005) Chem Soc Rev 34:276–285

    Article  Google Scholar 

  3. Yerushalmi R, Scherz A, van der Boom ME, Kraatz H-B (2005) J Mater Chem 15:4480–4487

    Article  CAS  Google Scholar 

  4. Jia Z, Chen H, Zhu X, Yan D (2006) J Am Chem Soc 128:8144–8145

    Article  CAS  Google Scholar 

  5. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Prog Polym Sci 32:1205–1237

    Article  CAS  Google Scholar 

  6. Chen H, Jia Z, Yan D, Zhu X (2007) Macromol Chem Phys 208:1637–1645

    Article  CAS  Google Scholar 

  7. Helms B, Fréchet JMJ (2006) Adv Synth Catal 348:1125–1148

    Article  CAS  Google Scholar 

  8. Wu C, Zhou SQ (1995) Macromolecules 28:5388–5390

    Article  CAS  Google Scholar 

  9. Wu C, Zhou SQ (1995) Macromolecules 28:8381–8387

    Article  CAS  Google Scholar 

  10. Wu C, Zhou SQ (1996) Phys Rev Lett 77:3053–3055

    Article  CAS  Google Scholar 

  11. Wang X, Qiu X, Wu C (1998) Macromolecules 31:2972–2976

    Article  CAS  Google Scholar 

  12. Van Durme K, Verbrugghe S, Du Prez FE, Van Mele B (2004) Macromolecules 37:1054–1061

    Article  Google Scholar 

  13. Luo S, Xu J, Zhu Z, Wu C, Liu S (2006) J Phys Chem B 110:9132–9139

    Article  CAS  Google Scholar 

  14. Ono Y, Shikata T (2006) J Am Chem Soc 128:10030–10031

    Article  CAS  Google Scholar 

  15. Cheng H, Shen L, Wu C (2006) Macromolecules 39:2325–2329

    Article  CAS  Google Scholar 

  16. Van Durme K, Van Assche G, Aseyev V, Raula J, Tenhu H, Van Mele B (2007) Macromolecules 40:3765–3772

    Article  Google Scholar 

  17. Ono Y, Shikata T (2007) J Phys Chem B 111:1511–1513

    Article  CAS  Google Scholar 

  18. Keerl M, Smirnovas V, Winter R, Richtering W (2008) Angew Chem Int Ed 47:338–341

    Article  CAS  Google Scholar 

  19. Schlüter AD, Rabe JP (2000) Angew Chem Int Ed 39:864–883

    Article  Google Scholar 

  20. Zhang A, Shu L, Bo Z, Schlüter AD (2003) Macromol Chem Phys 204:328–339

    Article  CAS  Google Scholar 

  21. Schlüter AD (2005) Top Curr Chem 245:151–191

    Google Scholar 

  22. Frauenrath H (2005) Prog Polym Sci 30:325–384

    Article  CAS  Google Scholar 

  23. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Chem Rev 109:6275–6540

    Article  CAS  Google Scholar 

  24. Li W, Zhang A, Feldman K, Walde P, Schlüter AD (2008) Macromolecules 41:3659–3667

    Article  CAS  Google Scholar 

  25. Li W, Zhang A, Schlüter AD (2008) Chem Commun 5523–5525

    Google Scholar 

  26. Li W, Wu D, Schlüter AD, Zhang A (2009) J Polym. Sci, Part A: Polym Chem 47:6630–6640

    Article  CAS  Google Scholar 

  27. Dormidontova EE (2004) Macromolecules 37:7747–7761

    Article  CAS  Google Scholar 

  28. Ober CK, Cheng SZD, Hammond PT, Muthukumar M, Reichmanis E, Wooley KL, Lodge TP (2009) Macromolecules 42:465–471

    Article  CAS  Google Scholar 

  29. Cady F, Qian H (2009) Phys Biol 6:036011

    Article  Google Scholar 

  30. Brutlag D, Kornberg A (1972) J Biol Chem 247:241–248

    CAS  Google Scholar 

  31. Drobny GP, Long JR, Karlsson T, Shaw W, Popham J, Oyler N, Bower P, Stringer J, Gregory D, Mehta M, Stayton PS (2003) Annu Rev Phys Chem 54:531–571

    Article  CAS  Google Scholar 

  32. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, London

    Google Scholar 

  33. Saalwächter K (2007) Prog Nucl Magn Reson Spectrosc 51:1–35

    Article  Google Scholar 

  34. Schlick S (ed) (2006) Advanced ESR methods in polymer rsearch. Wiley-Interscience, Hoboken

    Google Scholar 

  35. Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020–3023

    Article  CAS  Google Scholar 

  36. Heuer A, Wilhelm M, Zimmermann H, Spiess HW (1995) Phys Rev Lett 75:2851–2854

    Article  CAS  Google Scholar 

  37. Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Phys Rev Lett 81:2727–2730

    Article  CAS  Google Scholar 

  38. Hansen MR, Schnitzler T, Pisula W, Graf R, Müllen K, Spiess HW (2009) Angew Chem Int Ed 48:4621–4624

    Article  CAS  Google Scholar 

  39. Ruthstein S, Raitsimring AM, Bitton R, Frydman V, Godt A, Goldfarb D (2009) Phys Chem Chem Phys 11:148–160

    Article  CAS  Google Scholar 

  40. Hinderberger D, Spiess HW, Jeschke G (2010) Appl Magn Reson 37:657–683

    Article  Google Scholar 

  41. Dockter C, Volkov A, Bauer C, Polyhach Y, Joly-Lopez Z, Jeschke G, Paulsen H (2009) Proc Natl Acad Sci USA 106:18485–18490

    Article  CAS  Google Scholar 

  42. Hinderberger D, Schmelz O, Rehahn M, Jeschke G (2004) Angew Chem Int Ed 43:4616–4621

    Article  CAS  Google Scholar 

  43. Owenius R, Engstrom M, Lindgren M, Huber M (2001) J Phys Chem A 105:10967–10977

    Article  CAS  Google Scholar 

  44. Junk MJN, Jonas U, Hinderberger D (2008) Small 4:1485–1493

    Article  CAS  Google Scholar 

  45. Knauer BR, Napier JJ (1976) J Am Chem Soc 98:4395–4400

    Article  CAS  Google Scholar 

  46. Kovarskii AL, Wasserman AM, Buchachenko AL (1972) J Magn Reson 7:225–237

    Article  CAS  Google Scholar 

  47. Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood, New York

    Google Scholar 

  48. Derkaoui N, Said S, Grohens Y, Olier R, Privat M (2007) J Colloid Interface Sci 305:330–338

    Article  CAS  Google Scholar 

  49. Chaikin PM, Lubensky TC (1995) Principles of condensed matter physics. Cambridge University Press, Cambridge

    Google Scholar 

  50. Note that at the chosen polymer and spin probe concentrations ~30% of the spin probes reside in hydrophilic regions even at high temperatures. Therefore, the potential percolation point at yA ~ 0.5 appears when (0.5/0.7 ≈ 0.7) 70% of all probes taking part in the transition are trapped in hydrophobic regions.

    Google Scholar 

  51. Shibayama M, Takata S, Norisuye T (1998) Phys A 249:245–252

    Article  CAS  Google Scholar 

  52. Shibayama M (1998) Macromol Chem Phys 199:1–30

    Article  CAS  Google Scholar 

  53. Wu C, Li W, Zhu XX (2004) Macromolecules 37:4989–4992

    Article  CAS  Google Scholar 

  54. Bolisetty S, Schneider C, Polzer F, Ballauff M, Li W, Zhang A, Schlüter AD (2009) Macromolecules 42:7122–7128

    Article  CAS  Google Scholar 

  55. Aseyev V, Hietala S, Laukkanen A, Nuopponen M, Confortini O, Du Prez FE, Tenhu H (2005) Polymer 46:7118–7131

    Article  CAS  Google Scholar 

  56. Gorelov AV, Du Chesne A, Dawson KA (1997) Physica A 240:443–452

    Article  CAS  Google Scholar 

  57. Kujawa P, Aseyev V, Tenhu H, Winnik FM (2006) Macromolecules 39:7686–7693

    Article  CAS  Google Scholar 

  58. Li W, Zhang A, Chen Y, Feldman K, Wu H, Schlüter AD (2008) Chem Commun 5948–5950

    Google Scholar 

  59. Chan K, Pelton R, Zhang J (1999) Langmuir 15:4018–4020

    Article  CAS  Google Scholar 

  60. Balu C, Delsanti M, Guenoun P, Monti F, Cloitre M (2007) Langmuir 23:2404–2407

    Article  CAS  Google Scholar 

  61. Vasilevskaya VV, Khalatur PG, Khokhlov AR (2003) Macromolecules 36:10103–10111

    Article  CAS  Google Scholar 

  62. Baulin VA, Zhulina EB, Halperin A (2003) J Chem Phys 119:10977–10988

    Article  CAS  Google Scholar 

  63. Picarra S, Martinho JMG (2001) Macromolecules 34:53–58

    Article  CAS  Google Scholar 

  64. Dawson KA, Gorelov AV, Timoshenko EG, Kuznetsov YA, Du Chesne A (1997) Physica A 244:68–80

    Article  CAS  Google Scholar 

  65. Matsuo ES, Tanaka T (1988) J Chem Phys 89:1695–1703

    Article  CAS  Google Scholar 

  66. Yu H, Grainger DW (1993) J Appl Polym Sci 49:1553–1563

    Article  CAS  Google Scholar 

  67. Burchard W (1983) Adv Polym Sci 48:1–124

    Article  CAS  Google Scholar 

  68. Maeda Y, Higuchi T, Ikeda I (2000) Langmuir 16:7503–7509

    Article  CAS  Google Scholar 

  69. Maeda Y, Higuchi T, Ikeda I (2001) Langmuir 17:7535–7539

    Article  CAS  Google Scholar 

  70. Maeda Y, Nakamura T, Ikeda I (2001) Macromolecules 34:1391–1399

    Article  CAS  Google Scholar 

  71. Li W (2010) Novel dendritic macromolecules with water-soluble. Thermoresponsive and amphiphilic properties, Doctoral Dissertation, ETH Zürich

    Google Scholar 

  72. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  73. Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2010) Angew Chem 122:5818–5823

    Article  Google Scholar 

  74. Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2010) Angew Chem Int Ed 49:5683–5687

    Article  CAS  Google Scholar 

  75. Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2011) Macromol Chem Phys 212:1229–1235

    Article  CAS  Google Scholar 

  76. Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D (2011) J Am Chem Soc 133:10832–10838

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias J. N. Junk .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Junk, M.J. (2012). Local Nanoscopic Heterogeneities in Thermoresponsive Dendronized Polymers. In: Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25135-1_7

Download citation

Publish with us

Policies and ethics