Skip to main content

Copper Complexes of Star-Shaped Cholic Acid Oligomers With 1,2,3-Triazole Moieties

  • Chapter
  • First Online:
Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 724 Accesses

Abstract

Oligomers based on cholic acid are known to form hydrophobic cavities in hydrophilic solvents due to the facial amphiphilicity of their building blocks. In such pockets, non-polar molecules such as pyrene can be hosted. Oligomers with 1,2,3-triazole moieties are also able to coordinate heavy metal ions. Depending on their position in the cholic acid oligomer, the triazole groups may either cooperatively bind to the metal ion in analogy to a tridentate ligand or act as single entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukhopadhyay S, Maitra U (2004) Curr Sci 87:1666–1683

    CAS  Google Scholar 

  2. Benrebouh A, Avoce D, Zhu XX (2001) Polymer 42:4031–4038

    Article  CAS  Google Scholar 

  3. Fu H-L, Cheng S-X, Zhang X-Z, Zhuo R-X (2007) J Controlled Release 124:181–188

    Article  CAS  Google Scholar 

  4. Gauthier M, Simard P, Zhang Z, Zhu XX (2007) J R Soc Interface 4:1145–1150

    Article  CAS  Google Scholar 

  5. Zhang J, Zhu XX (2009) Sci Chin Ser B: Chem 52:849–861

    Article  CAS  Google Scholar 

  6. Zhu XX, Nichifor M (2002) Acc Chem Res 35:539–546

    Article  CAS  Google Scholar 

  7. Vijayalakshmi N, Maitra U (2006) J Org Chem 71:768–774

    Article  CAS  Google Scholar 

  8. Zhong ZQ, Zhao Y (2007) Org Lett 9:2891–2894

    Article  CAS  Google Scholar 

  9. Whitmarsh SD, Redmond AP Sgarlata V, Davis AP (2008) Chem Commun 3669–3671

    Google Scholar 

  10. Janout V, Lanier M, Regen SL (1996) J Am Chem Soc 118:1573–1574

    Article  CAS  Google Scholar 

  11. Janout V, Zhang LH, Staina IV, Di Giorgio C, Regen SL (2001) J Am Chem Soc 123:5401–5406

    Article  CAS  Google Scholar 

  12. Janout V, Jing BW, Regen SL (2002) Bioconjugate Chem 13:351–356

    Article  CAS  Google Scholar 

  13. Janout V, Jing BW, Staina IV, Regen SL (2003) J Am Chem Soc 125:4436–4437

    Article  CAS  Google Scholar 

  14. Janout V, Regen SL (2005) J Am Chem Soc 127:22–23

    Article  CAS  Google Scholar 

  15. Janout V, Jing BW, Regen SL (2005) J Am Chem Soc 127:15862–15870

    Article  CAS  Google Scholar 

  16. Janout V, Regen SL (2009) Bioconjugate Chem 20:183–192

    Article  CAS  Google Scholar 

  17. Zhao Y, Ryu EH (2005) J Org Chem 70:7585–7591

    Article  CAS  Google Scholar 

  18. Ryu EH, Yan J, Zhong Z, Zhao Y (2006) J Org Chem 71:7205–7213

    Article  CAS  Google Scholar 

  19. Ryu EH, Zhao Y (2004) Org Lett 6:3187–3189

    Article  CAS  Google Scholar 

  20. Ryu EH, Zhao Y (2006) J Org Chem 71:9491–9494

    Article  CAS  Google Scholar 

  21. Mukhopadhyay S, Maitra U, Ira, Krishnamoorthy G, Schmidt J, Talmon Y (2004) J Am Chem Soc 126:15905–15914

    Article  CAS  Google Scholar 

  22. Maitra U, Mukhopadhyay S, Sarkar A, Rao P, Indi SS (2001) Angew Chem Int Ed 40:2281–2283

    Article  CAS  Google Scholar 

  23. Luo J, Chen Y, Zhu XX (2007) Synlett 2201–2204

    Google Scholar 

  24. Luo J, Chen Y, Zhu XX (2009) Langmuir 25:10913–10917

    Article  CAS  Google Scholar 

  25. Zhang J, Luo J, Zhu XX, Junk MJN, Hinderberger D (2010) Langmuir 26:2958–2962

    Article  CAS  Google Scholar 

  26. Chen Y, Luo J, Zhu XX (2008) J Phys Chem B 112:3402–3409

    Article  CAS  Google Scholar 

  27. Tornoe CW, Christensen C, Meldal M (2002) J Org Chem 67:3057–3064

    Article  CAS  Google Scholar 

  28. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  29. Bock VD, Hiemstra H, van Maarseveen JH (2005) Eur J Org Chem 1:51–68

    Google Scholar 

  30. Kalyanasundaram K, Thomas JK (1977) J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  31. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Springer, Berlin

    Google Scholar 

  32. Assour JM (1965) J Chem Phys 43:2477–2489

    Article  CAS  Google Scholar 

  33. Stankowski J, Wieckowski A, Hedewy S (1974) J Magn Reson 15:498–509

    Article  CAS  Google Scholar 

  34. Bohandy J, Kim BF (1977) J Magn Reson 26:341–349

    Article  CAS  Google Scholar 

  35. Cunningham KL, McNett KM, Pierce RA, Davis KA, Harris HH, Falck DM, McMillin DR (1997) Inorg Chem 36:608–613

    Article  CAS  Google Scholar 

  36. van Koningsbruggen PJ, van Hal JW, de Graaff RAG, Haasnoot JG, Reedijk J (1993) J Chem Soc Dalton Trans 2163–2167

    Google Scholar 

  37. van Koningsbruggen PJ, Gatteschi D, Degraaff RAG, Haasnoot JG, Reedijk J, Zanchini C (1995) Inorg Chem 34:5175–5182

    Article  Google Scholar 

  38. Lu J, Bender CJ, McCracken J, Peisach J, Severns JC, McMillin DR (1992) Biochemistry 31:6265–6272

    Article  CAS  Google Scholar 

  39. Place C, Zimmermann J-L, Mulliez E, Guillot G, Bois C, Chottard J-C (1998) Inorg Chem 37:4030–4039

    Article  CAS  Google Scholar 

  40. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Biochemistry 41:3991–4001

    Article  CAS  Google Scholar 

  41. Benesi HA, Hildebrand JH (1949) J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  42. Chang K-C, Su I-H, Senthilvelan A, Chung W-S (2007) Org Lett 9:3363–3366

    Article  CAS  Google Scholar 

  43. Lehn J-M (1995) Supramolecular Chemistry: concepts and perspectives. Wiley, New York

    Book  Google Scholar 

  44. Qi X, Jun EJ, Xu L, Kim S-J, Hong JSJ, Yoon YJ, Yoon J (2006) J Org Chem 71:2881–2884

    Article  CAS  Google Scholar 

  45. Xiang Y, Tong A, Jin P, Ju Y (2006) Org Lett 8:2863–2866

    Article  CAS  Google Scholar 

  46. Park SM, Kim MH, Choe J-I, No KT, Chang S-K (2007) J Org Chem 72:3550–3553

    Article  CAS  Google Scholar 

  47. Huang S, Clark RJ, Zhu L (2007) Org Lett 9:4999–5002

    Article  CAS  Google Scholar 

  48. Moon SY, Youn NJ, Park SM, Chang SK (2005) J Org Chem 70:2394–2397

    Article  CAS  Google Scholar 

  49. Zhao Y, Zhong Z (2006) Org Lett 8:4715–4717

    Article  CAS  Google Scholar 

  50. Hung H-C, Cheng C-W, Ho I-T, Chung W-S (2009) Tetrahedron Lett 50:302–305

    Article  CAS  Google Scholar 

  51. Zhu L, dos Santos O, Koo CW, Rybstein M, Pape L, Canary JW (2003) Inorg Chem 42:7912–7920

    Article  CAS  Google Scholar 

  52. Richeter S, Rebek J (2004) J Am Chem Soc 126:16280–16281

    Article  CAS  Google Scholar 

  53. Parkin G (2004) Chem Rev 104:699–767

    Article  CAS  Google Scholar 

  54. Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  55. Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New York

    Google Scholar 

  56. Iwaizumi M, Ohba Y, Iida H, Hirayama M (1984) Inorg Chim Acta 82:47–52

    Article  CAS  Google Scholar 

  57. Zhang J (2010) 基于胆酸的分子篮的合成与性质表征 (The synthesis and properties of molecular pockets based on cholic acid). Doctoral Dissertation, Nankai University, Tianjin

    Google Scholar 

  58. Schweiger A (1991) Angew Chem Int Ed 30:265–292

    Article  Google Scholar 

  59. Höfer P, Grupp A, Nebenführ H, Mehring M (1986) Chem Phys Lett 132:279–282

    Article  Google Scholar 

  60. Jiang F, McCracken J, Peisach J (1990) J Am Chem Soc 112:9035–9044

    Article  CAS  Google Scholar 

  61. Slutter CE, Gromov I, Epel B, Pecht I, Richards JH, Goldfarb D (2001) J Am Chem Soc 123:5325–5336

    Article  CAS  Google Scholar 

  62. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  63. Madi ZL, Van Doorslaer S, Schweiger A (2002) J Magn Reson 154:181–191

    Article  CAS  Google Scholar 

  64. Milov AD, Salikhov KM, Shirov MD (1981) Fiz Tverd Tela 23:975–982

    CAS  Google Scholar 

  65. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) J Magn Reson 142:331–340

    Article  CAS  Google Scholar 

  66. Jeschke G, Pannier M, Spiess HW (2000) Double electron–electron resonance. In: Berliner LJ, Eaton GR, Eaton SS (eds) Biological magnetic resonance, Distance measurements in biological systems by EPR, vol 19. Kluwer Academic, New York

    Google Scholar 

  67. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

  68. Zhang J, Junk MJN, Luo J, Hinderberger D, Zhu XX (2010) Langmuir 26:13415–13421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias J. N. Junk .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Junk, M.J. (2012). Copper Complexes of Star-Shaped Cholic Acid Oligomers With 1,2,3-Triazole Moieties. In: Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25135-1_4

Download citation

Publish with us

Policies and ethics