Skip to main content

The Functional Structure of Human Serum Albumin

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Human serum albumin (HSA) is a versatile transport protein for various endogenous compounds and drugs. This study focuses on its highly relevant transport function for fatty acids in the circulatory system. While extensive crystallographic data on HSA–fatty acid binding exist, a new spectroscopic approach is used to gain information on the functional structure of HSA in solution. Using spin-labeled stearic acid and applying double electron–electron resonance (DEER) spectroscopy, the functional protein structure is accessed for the first time from the ligands’ point of view.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Peters T (1995) All about albumin: biochemistry genetics and medical applications. Academic, San Diego

    Google Scholar 

  2. Carter DC, Ho JX (1994) Adv Protein Chem 45:153–203

    Article  CAS  Google Scholar 

  3. Spector AA (1975) J Lipid Res 16:165–179

    CAS  Google Scholar 

  4. Hamilton JA, Cistola DP, Morrisett JD, Sparrow JT, Small DM (1984) Proc Natl Acad Sci USA 81:3718–3722

    Article  CAS  Google Scholar 

  5. He XM, Carter DC (1992) Nature 358:209–215

    Article  CAS  Google Scholar 

  6. Curry S, Mandelkow H, Brick P, Franks N (1998) Nat Struct Biol 5:827–835

    Article  CAS  Google Scholar 

  7. Curry S, Brick P, Franks NP (1999) Biochim Biophys Acta Mol Cell Biol Lipids 1441:131–140

    CAS  Google Scholar 

  8. Bhattacharya AA, Grüne T, Curry S (2000) J Mol Biol 303:721–732

    Article  CAS  Google Scholar 

  9. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) IUBMB Life 57:787–796

    Google Scholar 

  10. Hamilton JA, Era S, Bhamidipati SP, Reed RG (1991) Proc Natl Acad Sci USA 88:2051–2054

    Article  CAS  Google Scholar 

  11. Simard JR, Zunszain PA, Ha CE, Yang JS, Bhagavan NV, Petitpas I, Curry S, Hamilton JA (2005) Proc Natl Acad Sci USA 102:17958–17963

    Article  CAS  Google Scholar 

  12. Simard JR, Zunszain PA, Hamilton JA, Curry S (2006) J Mol Biol 361:336–351

    Article  CAS  Google Scholar 

  13. Henzler-Wildman K, Kern D (2007) Nature 450:964–972

    Article  CAS  Google Scholar 

  14. Lange OF, Lakomek N-A, Farès C, Schröder GF, Walter KFA, Becker S, Meiler J, Grubmüller H, Griesinger C, de Groot BL (2008) Science 320:1471–1475

    Article  CAS  Google Scholar 

  15. Salmon L, Bouvignies G, Markwick P, Lakomek N, Showalter S, Li D-W, Walter K, Griesinger C, Brüschweiler R, Blackledge M (2009) Angew Chem Int Ed 48:4154–4157

    Article  CAS  Google Scholar 

  16. Karush F (1950) J Am Chem Soc 72:2705–2713

    Article  CAS  Google Scholar 

  17. Karush F (1954) J Am Chem Soc 76:5536–5542

    Article  CAS  Google Scholar 

  18. Laiken N, Nemethy G (1971) Biochem 10:2101–2106

    Article  CAS  Google Scholar 

  19. Morrisett JD, Pownall HJ, Gotto AM (1975) J Biol Chem 250:2487–2494

    CAS  Google Scholar 

  20. Rehfeld SJ, Eatough DJ, Plachy WZ (1978) J Lipid Res 19:841–849

    CAS  Google Scholar 

  21. Livshits VA, Marsh D (2000) Biochim Biophys Acta Biomembr 1466:350–360

    Article  CAS  Google Scholar 

  22. Milov AD, Salikhov KM, Shirov MD (1981) Fiz Tverd Tela 23:975–982

    CAS  Google Scholar 

  23. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) J Magn Reson 142:331–340

    Article  CAS  Google Scholar 

  24. Jeschke G, Pannier M, Spiess HW (2000) Double electron–electron resonance. In: Berliner LJ, Eaton GR, Eaton SS (eds) Biological magnetic resonance, vol 19: distance measurements in biological systems by EPR. Kluwer Academic, New York

    Google Scholar 

  25. Jeschke G (2002) Macromol Rapid Commun 23:227–246

    Article  CAS  Google Scholar 

  26. Hinderberger D, Schmelz O, Rehahn M, Jeschke G (2004) Angew Chem Int Ed 43:4616–4621

    Article  CAS  Google Scholar 

  27. Schiemann O, Prisner TF (2007) Q Rev Biophys 40:1–53

    Article  CAS  Google Scholar 

  28. Dockter C, Volkov A, Bauer C, Polyhach Y, Joly-Lopez Z, Jeschke G, Paulsen H (2009) Proc Natl Acad Sci USA 106:18485–18490

    Article  CAS  Google Scholar 

  29. Hilger D, Jung H, Padan E, Wegener C, Vogel KP, Steinhoff HJ, Jeschke G (2005) Biophys J 89:1328–1338

    Article  CAS  Google Scholar 

  30. Schiemann O, Piton N, Plackmeyer J, Bode BE, Prisner TF, Engels JW (2007) Nat Protoc 2:904–923

    Article  CAS  Google Scholar 

  31. Schiemann O, Cekan P, Margraf D, Prisner TF, Sigurdsson ST (2009) Angew Chem Int Ed 48:3292–3295

    Article  CAS  Google Scholar 

  32. Jeschke G, Sajid M, Schulte M, Godt A (2009) Phys Chem Chem Phys 11:6580–6591

    Article  CAS  Google Scholar 

  33. Schneider DJ, Freed JH (1989) Continuous-wave and pulsed ESR methods. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 8: spin labeling–theory and applications. Plenum Press, New York

    Google Scholar 

  34. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  35. Kawai K, Suzuki T, Oguni M (2006) Biophys J 90:3732–3738

    Article  CAS  Google Scholar 

  36. Inoue C, Ishikawa M (2000) J Food Sci 65:1187–1193

    Article  CAS  Google Scholar 

  37. Rariy RV, Klibanov AM (1997) Proc Natl Acad Sci USA 94:13520–13523

    Article  CAS  Google Scholar 

  38. Milov AD, Ponomarev AB, Tsvetkov YD (1984) Chem Phys Lett 110:67–72

    Article  CAS  Google Scholar 

  39. Bode BE, Margraf D, Planckmeyer J, Dürner G, Prisner TF, Schiemann O (2007) J Am Chem Soc 129:6736–6745

    Article  CAS  Google Scholar 

  40. Godt A, Franzen C, Veit S, Enkelmann V, Pannier M, Jeschke G (2000) J Org Chem 65:7575–7582

    Article  CAS  Google Scholar 

  41. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

  42. Polyhach Y, Godt A, Bauer C, Jeschke G (2007) J Magn Reson 185:118–129

    Article  CAS  Google Scholar 

  43. Curry S (2009) Drug Metab Pharmacokinet 24:342–357

    Article  CAS  Google Scholar 

  44. Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S 2003 BMC Struct. Biol. 3: 6, doi:10.1186/1472

  45. Zunszain PA, Ghuman J, McDonagh AF, Curry S (2008) J Mol Biol 381:394–406

    Article  CAS  Google Scholar 

  46. Wardell M, Wang ZM, Ho JX, Robert J, Ruker F, Ruble J, Carter DC (2002) Biochem Biophys Res Commun 291:813–819

    Article  CAS  Google Scholar 

  47. Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S (2003) Proc Natl Acad Sci USA 100:6440–6445

    Article  CAS  Google Scholar 

  48. Narr E, Godt A, Jeschke G (2002) Angew Chem Int Ed 41:3907–3910

    Article  CAS  Google Scholar 

  49. van Amsterdam IMC, Ubbink M, Canters GW, Huber M (2003) Angew Chem Int Ed 42:62–64

    Article  Google Scholar 

  50. Larsen RG, Singel DJ (1993) J Chem Phys 98:5134–5146

    Article  CAS  Google Scholar 

  51. Maryasov AG, Tsvetkov YD, Raap J (1998) Appl Magn Reson 14:101–113

    Article  CAS  Google Scholar 

  52. Hertel MM, Denysenkov VP, Bennati M, Prisner TF (2005) Magn Reson Chem 43:S248–S255

    Article  CAS  Google Scholar 

  53. Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2006) Proc Natl Acad Sci USA 103:13386–13390

    Article  CAS  Google Scholar 

  54. Denysenkov VP, Biglino D, Lubitz W, Prisner TF, Bennati M (2008) Angew Chem Int Ed 47:1224–1227

    Article  CAS  Google Scholar 

  55. Savitsky A, Dubinskii AA, Flores M, Lubitz W, Möbius K (2007) J Phys Chem B 111:6245–6262

    Article  CAS  Google Scholar 

  56. Margraf D, Bode BE, Marko A, Schiemann O, Prisner TF (2007) Mol Phys 105:2153–2160

    Article  CAS  Google Scholar 

  57. Bode BE, Plackmeyer J, Prisner TF, Schiemann O (2008) J Phys Chem A 112:5064–5073

    Article  CAS  Google Scholar 

  58. Kay CWM, El Mkami H, Cammack R, Evans RW (2007) J Am Chem Soc 129:4868–4869

    Article  CAS  Google Scholar 

  59. Yang Z, Becker J, Saxena S (2007) J Magn Reson 188:337–343

    Article  CAS  Google Scholar 

  60. Lovett JE, Bowen AM, Timmel CR, Jones MW, Dilworth JR, Caprotti D, Bell SG, Wong LL, Harmer J (2009) Phys Chem Chem Phys 11:6840–6848

    Article  CAS  Google Scholar 

  61. Cunningham KL, McNett KM, Pierce RA, Davis KA, Harris HH, Falck DM, McMillin DR (1997) Inorg Chem 36:608–613

    Article  CAS  Google Scholar 

  62. Jeschke G, Bender A, Paulsen H, Zimmermann H, Godt A (2004) J Magn Reson 169:1–12

    Article  CAS  Google Scholar 

  63. Hyde JS, Pasenkiewicz-Gierula M, Jesmanowicz A, Antholine WE (1990) Appl Magn Reson 1:483–496

    Article  Google Scholar 

  64. Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Proteins 57:678–683

    Article  CAS  Google Scholar 

  65. Junk MJN, Spiess HW, Hinderberger D (2010) Angew Chem 122:8937–8941

    Google Scholar 

  66. Junk MJN, Spiess HW, Hinderberger D (2010) Angew Chem Int Ed 49:8755–8759

    Article  CAS  Google Scholar 

  67. Junk MJN, Spiess HW, Hinderberger D (2011) J Magn Reson 210:210–217

    Article  CAS  Google Scholar 

  68. Junk MJN, Spiess HW, Hinderberger D (2011) Biophys J 100:2293–2301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias J. N. Junk .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Junk, M.J. (2012). The Functional Structure of Human Serum Albumin. In: Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25135-1_3

Download citation

Publish with us

Policies and ethics