Skip to main content

Analysis and Interpretation of Density and Wind Data

  • Chapter
  • First Online:
  • 929 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The previous chapter already provided several figures and tables, illustrating results of the density and wind processing algorithms. These output data will now be analysed more closely. The various data sets will be plotted in various ways, compared with each other and with output from models, and interpreted in terms of geophysical signals and error sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arduini C, Laneve G, Herrero FA (1997) Local time and altitude variation of equatorial thermosphere midnight density maximum (MDM): San Marco drag balance measurements. Geophys Res Lett 24(4):377–380. doi:10.1029/97GL00189

    Google Scholar 

  2. Barlier F, Berger C, Falin JL, Kockarts G, Thuillier G (1978) A thermospheric model based on satellite drag data. Annales de Geophysique 34(1):9–24

    Google Scholar 

  3. Bettadpur S (2007) Gravity recovery and climate experiment product specification document (rev 4.5—february 20, 2007), GRACE 327–720/CSR-GR-03-02. Center for Space Research, The University of Texas at Austin

    Google Scholar 

  4. Bruinsma S, Biancale R (2003) Total densities derived from accelerometer data. J Spacecr Rocket 40(2):230–236

    Google Scholar 

  5. Bruinsma SL, Forbes JM (2007) Global observation of travelling atmospheric disturbances (TADs) in the thermosphere. Geophys Res Lett 34(L14103). doi:10.1029/2007GL030243

  6. Emmert JT (2009) A long-term data set of globally averaged thermospheric total mass density. J Geophys Res 114(A06315). doi:10.1029/2009JA014102

  7. Emmert JT, Picone JM, Meier RR (2008) Thermospheric global average density trends, 1967– 2007, derived from orbits of 5000 near-earth objects. Geophys Res Lett 35(L05101). doi:10.1029/2007GL032809

  8. Emmert JT, Lean JL, Picone JM (2010) Record-low thermospheric density during the 2008 solar minimum. Geophys Res Lett 37(L12102). doi:10.1029/2010GL043671

  9. Flury J, Bettadpur S, Tapley BD (2008) Precise accelerometry onboard the GRACE gravity field satellite mission. Adv Space Res 42(8):1414–1423. doi:10.1016/j.asr.2008.05.004

  10. Forbes JM, Bruinsma SL, Miyoshi Y, Fujiwara H (2008) A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite. Geophys Res Lett 35(L14802). doi:10.1029/2008GL034075

  11. Förster M, Rentz S, Köhler W, Liu H, Haaland SE (2008) IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements. Annales Geophysicae 26(6):1581–1595

    Article  Google Scholar 

  12. Garcia RR (2010) Solar surprise? Nature 467:668–669. doi:10.1038/467688a

    Google Scholar 

  13. Hedin AE (1983) A revised thermospheric model based on mass spectrometer and incoherent scatter data—MSIS-83. J Geophys Res 88:10170–10188

    Article  Google Scholar 

  14. Jacchia LG, Slowey J (1962) Accurate drag determinations for eight artificial satellites; atmospheric densities and temperatures. Smithsonian Astrophysical Observatory Special Report 100

    Google Scholar 

  15. Keating GM, Tolson RH, Bradford MS (2000) Evidence of long term global decline in the earth’s thermospheric densities apparently related to anthropogenic effects. Geophys Res Lett 27(10):1523–1526

    Article  Google Scholar 

  16. Liu H, Lühr H, Watanabe S (2009) A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP. Geophys Res Lett 36(L10109). doi:10.1029/2009GL038165

  17. Lühr H, Rother M, Köhler W, Ritter P, Grunwaldt L (2004) Thermospheric upwelling in the cusp region: evidence from CHAMP observations. Geophys Res Lett 31(6). doi:10.1029/2003GL019314

  18. Lühr H, Rentz S, Ritter P, Liu H, Häusler K (2007) Average thermospheric wind pattern over the polar regions, as observed by CHAMP. Annales Geophysicae 25(5):1093–1101

    Article  Google Scholar 

  19. Marcos FA, Wise JO, Kendra MJ, Grossbard NJ, Bowman BR (2005) Detection of a long-term decrease in thermospheric neutral density. Geophys Res Lett 32(L04103). doi:10.1029/2004GL021269

  20. Miyoshi Y, Fujiwara H, Forbes JM, Bruinsma SL (2009) Solar terminator wave and its relation to the atmospheric tide. J Geophys Res 114(A07303). doi:10.1029/2009JA014110

  21. Moe K, Moe MM (2005) Gas-surface interactions and satellite drag coefficients. Planet Space Sci 53(8):793–801. doi:10.1016/j.pss.2005.03.005

    Google Scholar 

  22. Peterseim N, Schlicht A (2010) New investigations on twangs. In: GRACE accelerometer data. Poster presented at the Grace Science Team Meeting, Potsdam, Germany, 11–12 Nov 2010

    Google Scholar 

  23. Picone JM, Emmert JT, Lean J (2005) Thermospheric densities derived from spacecraft orbits-I. Accurate processing of two-line element sets. J Geophys Res 110(A03301). doi:10.1029/2004JA010585

  24. Rentz S, Lühr H (2008) Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Annales Geophysicae 26(9):2807–2823

    Article  Google Scholar 

  25. Rishbeth H, Roble RG (1992) Cooling of the upper atmosphere by enhanced greenhouse gases—modelling of thermospheric and ionospheric effects.. Planet Space Sci 40(7):1011–1026. doi:10.1016/0032-0633(92)90141-A

    Article  Google Scholar 

  26. Roble RG, Dickinson RE (1989) How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?. Geophys Res Lett 16:1441–1444

    Article  Google Scholar 

  27. Sentman LH (1961) Free molecule flow theory and its application to the determination of aerodynamic forces, LMSC-448514. Lockheed Missiles & Space Company

    Google Scholar 

  28. Solomon SC, Woods TN, Didkovsky LV, Emmert JT (2010) Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys Res Lett 37(L16103). doi:10.1029/2010GL044468

  29. Spencer NW, Carignan GR, Mayr HG, Niemann HB, Theis RF, Wharton LE (1979) The midnight temperature maximum in the Earth’s equatorial thermosphere. Geophys Res Lett 6:444–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doornbos, E. (2012). Analysis and Interpretation of Density and Wind Data. In: Thermospheric Density and Wind Determination from Satellite Dynamics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25129-0_5

Download citation

Publish with us

Policies and ethics