Skip to main content

A Model of Rotary Spinning Process

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2010

Part of the book series: Mathematics in Industry ((TECMI,volume 17))

  • 1649 Accesses

Abstract

A rotary spinning process is used to produce aramide fibers. In this process thin jets of polymer solution emerge from the nozzles of the rotating rotor and flow towards the cylindrical coagulator. At the coagulator the jets hit the water curtain in which they solidify forming fibers. The rotary spinning is described by a steady jet of viscous Newtonian fluid between the rotor and the coagulator. The jet model includes the effects of inertia, longitudinal viscosity, and centrifugal and Coriolis forces. For the jet model the specific type of the boundary conditions depends on the balance between the inertia and viscosity in the momentum transfer through the jet cross-section. Based on that we find two possible flow regimes in rotary spinning: (1) viscous-inertial, where viscosity dominates at the rotor and inertia at the coagulator (2) inertial, where inertia dominates everywhere in the jet. Moreover, there are two situations where spinning is not possible, either due to lack of a steady-jet solution or because the jet wraps around the rotor. Finally, we characterize the parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Decent, S.P., King, A.C., Wallwork, I.M.: Free jets spun from a prilling tower. J. Eng. Math. 42(3), 265–282 (2002)

    Google Scholar 

  2. den Decker, P., Knoester, H., Meerman, H., Dekker K. van Horssen, W., Vuik, C., Wesseling, P., Prokert, G., van ’t Hof, B., van Beckum, F.: The rotor spinning process for fibre production. In: Proceedings of the 48th European Study Group Mathematics with Industry (Delft, 15–19 March 2004), pp. 35–48 (2004)

    Google Scholar 

  3. Hlod, A.: Curved jets of viscous fluid: Interactions with a moving wall. Ph.D. thesis, Eindhoven University of Technology (2009)

    Google Scholar 

  4. Hlod, A., Aarts, A.C.T., van de Ven, A.A.F., Peletier, M.A.: Three flow regimes of viscous jet falling onto a moving surface. IMA J. Appl. Math. (2011). DOI 10.1093/imamat/hxr017. URL http://imamat.oxfordjournals.org/content/early/2011/03/23/imamat.hxr017.abstract

  5. Kolk, E.: Mathematical models for a rotor spinning process. Interim report, TU Delft (2005)

    Google Scholar 

  6. Kolk, E.: Mathematical models for a rotor spinning process. Final report, TU Delft (2005)

    Google Scholar 

  7. Marheineke, N., Wegener, R.: Asymptotic model for the dynamics of curved viscous fibres with surface tension. J. Fluid. Mech. 622(-1), 345–369 (2009)

    Google Scholar 

  8. Panda, S.: The dynamics of viscous fibers. Ph.D. thesis, Technische Universität Kaiserslautern (2006)

    Google Scholar 

  9. Panda, S., Marheineke, N., Wegener, R.: Systematic derivation of an asymptotic model for the dynamics of curved viscous fibers. Math. Meth. Appl. Sci. 31(10), 1153–1173 (2008)

    Google Scholar 

  10. Parau, E.I., Decent, S., Simmons, M., Wong, D.C.Y., King, A.C.: Nonlinear viscous liquid jets from a rotating orifice. J. Eng. Math. 57(2), 159–179 (2007)

    Google Scholar 

  11. Parau, E.I., Decent, S.P., King, A.C., Simmons, M.J.H., Wong, D.C.: Nonlinear travelling waves on a spiralling liquid jet. Wave Motion 43(7), 599–618 (2006)

    Google Scholar 

  12. Partridge, L., Wong, D.C.Y., Simmons, M.J.H., Parau, E.I., Decent, S.P.: Experimental and theoretical description of the break-up of curved liquid jets in the prilling process. Chem. Eng. Res. Des. 83(A11), 1267–1275 (2005)

    Google Scholar 

  13. Uddin, J., Decent, S.P., Simmons, M.J.: The instability of shear thinning and shear thickening spiralling liquid jets: linear theory. Trans. ASME J. Fluid. Eng. 128(5), 968–975 (2006)

    Google Scholar 

  14. Wallwork, I.M., Decent, S.P., King, A.C., Schulkes, R.M.S.M.: The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory. J. Fluid. Mech. 459, 43–66 (2002)

    Google Scholar 

  15. Wong, D.C.Y., Simmons, M.J.H., Decent, S.P., Parau, E.I., King, A.C.: Break-up dynamics and drop size distributions created from spiralling liquid jets. Int. J. Multiphas. Flow 30(5), 499–520 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Hlod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hlod, A., van de Ven, A.A.F., Peletier, M.A. (2012). A Model of Rotary Spinning Process. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds) Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry(), vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25100-9_40

Download citation

Publish with us

Policies and ethics