Skip to main content

Dynamic Balancing and Walking for Real-Time 3D Characters

  • Conference paper
Motion in Games (MIG 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7060))

Included in the following conference series:

Abstract

This paper describes the real-time modeling of 3D skeletal motion with balancing properties. Our goal is to mimic human responsiveness when external forces are applied to the model. To achieve this we use an inverted pendulum as a basis for achieving a self-balancing model. We demonstrate responsiveness in stepping and posture control via a simplified biped skeletal model using our technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sulejmanpašić, A., Popović, J.: Adaptation of performed ballistic motion. ACM Transactions on Graphics 24, 165–179 (2005)

    Article  Google Scholar 

  2. Liu, C.K., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 1071 (2005)

    Article  Google Scholar 

  3. Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics 23, 514 (2004)

    Article  Google Scholar 

  4. Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Transactions on Graphics 22, 417 (2003)

    Article  Google Scholar 

  5. Mandel, M.J.: Versatile and Interactive Virtual Humans: Hybrid use of Data-Driven and Dynamics-Based Motion Synthesis. Simulation (2004)

    Google Scholar 

  6. Wrotek, P., Jenkins, O.C., McGuire, M.: Dynamo: Dynamic, Data-driven Character Control with Adjustable Balance. In: ACM Sandbox Symposium on Video Games (2006)

    Google Scholar 

  7. Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2002, p. 491 (2002)

    Google Scholar 

  8. Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletics. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 71–78 (1995)

    Google Scholar 

  9. Sharon, D., van de Panne, M.: Synthesis of Controllers for Stylized Planar Bipedal Walking. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2387–2392 (2005)

    Google Scholar 

  10. Yin, K.: SIMBICON: Simple Biped Locomotion Control. Control 26, 1–10 (2007)

    Google Scholar 

  11. Sok, K.W., Kim, M., Lee, J.: Simulating Biped Behaviors from Human Motion Data. Database 26 (2007)

    Google Scholar 

  12. Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers. ACM Transactions on Graphics 28, 1 (2009)

    Google Scholar 

  13. Lasa, M.D.: Feature-Based Locomotion Controllers. Computer Graphics Forum (2010)

    Google Scholar 

  14. Adiwahono, A.H., Chew, C.-M., Huang, W., Zheng, Y.: Push recovery controller for bipedal robot walking. In: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 162–167 (July 2009)

    Google Scholar 

  15. Pratt, J., Pratt, G.: Exploiting natural dynamics in the control of a 3d bipedal walking simulation. In: Proceedings of the International Conference on Climbing and Walking Robots, Citeseer, pp. 797–807 (1999)

    Google Scholar 

  16. Raibert, M.H.: Legged Robots That Balance. MIT Press (1986)

    Google Scholar 

  17. Stephens, B.J., Atkeson, C.G.: Push Recovery by Stepping for Humanoid Robots with Force Controlled Joints. Primus

    Google Scholar 

  18. Stephens, B.: Humanoid push recovery. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp. 589–595 (November 2007)

    Google Scholar 

  19. Abe, Y., Silva, M.: Multiobjective Control with Frictional Contacts. Computing (2007)

    Google Scholar 

  20. Zordan, V.B., Hodgins, J.K.: Motion capture-driven simulations that hit and react. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation SCA 2002, p. 89. ACM Press, New York (2002)

    Chapter  Google Scholar 

  21. Nakaoka, S., Nakazawa, A., Yokoi, K., Hirukawa, H., Ikeuch, K.: Generating whole body motions for a biped humanoid robot from captured human dances. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), pp. 3905–3910 (2003)

    Google Scholar 

  22. Faloutsos, P., van de Panne, M., Terzopoulos, D.: The virtual stuntman: dynamic characters with a repertoire of autonomous motor skills. Computers & Graphics 25, 933–953 (2001)

    Article  Google Scholar 

  23. Kim, J.-Y., Park, I.-W., Oh, J.-H.: Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor. Journal of Intelligent and Robotic Systems 48, 457–484 (2007)

    Article  Google Scholar 

  24. Tsai, Y.-Y., Lin, W.-C., Cheng, K.B., Lee, J., Lee, T.-Y.: Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Transactions on Visualization and Computer Graphics 16, 325–337 (2010)

    Article  Google Scholar 

  25. Hodgins, J.K., Pollard, N.S.: Adapting simulated behaviors for new characters. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH 1997, pp. 153–162 (1997)

    Google Scholar 

  26. Yin, K., Coros, S., Beaudoin, P., van de Panne, M.: Continuation methods for adapting simulated skills. ACM Transactions on Graphics 27, 1 (2008)

    Article  Google Scholar 

  27. Coros, S., Beaudoin, P., Yin, K.K., van de Pann, M.: Synthesis of constrained walking skills. ACM Transactions on Graphics 27, 1 (2008)

    Article  Google Scholar 

  28. Maus, H., Rummel, J., Seyfarth, A.: Stable Upright Walking and Running using a simple Pendulum based Control Scheme, pp. 4–10 (Spring 2008)

    Google Scholar 

  29. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), pp. 239–246 (2001)

    Google Scholar 

  30. Kajita, S., Tan, K.: Study of Dynamic Biped Locomotion on Rugged Terrain - Derivation and Application of the Linear Inverted Pendulum Mode. Mechanical Engineering, 1405–1411 (1991)

    Google Scholar 

  31. Kajita, S., Tani, K.: Experimental study of biped dynamic walking in the linear inverted pendulum mode. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, pp. 2885–2891 (1965)

    Google Scholar 

  32. Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: Bouncing like a monopode. Journal of Comparative Physiology A 173 (November 1993)

    Google Scholar 

  33. Full, R., Farley, C.T.: Musculoskeletal dynamics in rhythmic systems: a comparative approach to legged locomotion. In: Biomechanics and Neural Control of Posture and Movement. Springer, New York (2000)

    Google Scholar 

  34. Raibert, M.H., Hodgins, J.K.: Animation of dynamic legged locomotion. ACM SIGGRAPH Computer Graphics 25, 349–358 (1991)

    Article  Google Scholar 

  35. Pratt, J.: Virtual Model Control: An Intuitive Approach for Bipedal Locomotion. The International Journal of Robotics Research 20, 129–143 (2001)

    Article  Google Scholar 

  36. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), pp. 1620–1626 (2003)

    Google Scholar 

  37. Neville, N., Buehler, M., Sharf, I.: A bipedal running robot with one actuator per leg. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 848–853 (2006)

    Google Scholar 

  38. Rummel, J., Seyfarth, A.: Passive stabilization of the trunk in walking. In: Autonomous Robots, pp. 127–136 (2010)

    Google Scholar 

  39. Zordan, V., Macchietto, A., Medina, J., Soriano, M., Wu, C.-C.: Interactive dynamic response for games. In: Proceedings of the 2007 ACM SIGGRAPH Symposium on Video Games (Sandbox 2007), pp. 9–14. ACM, New York (2007), doi:10.1145/1274940.1274944

    Chapter  Google Scholar 

  40. Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. In: Gross, M. (ed.) ACM SIGGRAPH 2005 Papers (SIGGRAPH 2005). ACM, New York (2005), http://doi.acm.org/10.1145/1186822.1073249 , doi:10.1145/1186822.1073249

    Google Scholar 

  41. http://www.youtube.com/watch?v=jLlMSD8jcBc

  42. Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. ACM Transactions on Graphics 29(4), Article 130 (2010)

    Article  Google Scholar 

  43. Mordatch, I., de Lasa, M., Hertzmann, A.: Robust physics-based locomotion using low-dimensional planning. In: Hoppe, H. (ed.) ACM SIGGRAPH 2010 Papers (SIGGRAPH 2010), Article 71 , 8 pages. ACM, New York (2010), http://doi.acm.org/10.1145/1833349.1778808 , doi:10.1145/1833349.1778808

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kenwright, B., Davison, R., Morgan, G. (2011). Dynamic Balancing and Walking for Real-Time 3D Characters. In: Allbeck, J.M., Faloutsos, P. (eds) Motion in Games. MIG 2011. Lecture Notes in Computer Science, vol 7060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25090-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25090-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25089-7

  • Online ISBN: 978-3-642-25090-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics