Skip to main content

A Quantitative Methodology to Evaluate Motion-Based Animation Techniques

  • Conference paper
  • 1433 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7060))

Abstract

We present a novel methodology to quantitatively evaluate the synthesized motion generated by a motion-based animation technique. Our quantitative evaluation methodology provides a measure of how well each algorithm synthesizes motion based on their rotational and translational similarities to the ground truth in a motion database. To demonstrate the effectiveness of our methodology, we focus on techniques that combine different motions into a single spliced action where individual motions are performed simultaneously. We implement three splicing algorithms to perform a comparison study based on our quantitative evaluation methodology. The splicing algorithms considered are spatial body alignment, segmentation-based, and naïve DOF replacement. The spatial body alignment adapts the spliced motion according to this joint correlation and, consequently, performs best under our evaluation methodology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arikan, O., Forsyth, D.: Interactive motion generation from examples. ACM Transactions on Graphics 21(3), 483–490 (2002)

    Article  MATH  Google Scholar 

  2. Gleicher, M.: Retargetting motion to new characters. In: Proceedings of ACM SIGGRAPH 1998, pp. 33–42 (1998)

    Google Scholar 

  3. Guerra-Filho, G., Biswas, A.: The human motion database: A cognitive and parametric sampling of human motion. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition (2011)

    Google Scholar 

  4. Heck, R., Kovar, L., Gleicher, M.: Splicing upper body actions with locomotion. Computer Graphics Forum 25(3), 459–466 (2006)

    Article  Google Scholar 

  5. Horn, K.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A(4), 629–642 (1987)

    Article  Google Scholar 

  6. Ikemoto, L., Forsyth, D.: Enriching a motion collection by transplanting limbs. In: Proceedings of ACM Siggraph/Eurographics Symposium on Computer Animation, pp. 99–108 (2004)

    Google Scholar 

  7. Jang, W., Lee, W., Lee, J.: Enriching a motion database by analogous combination of partial human motions. Proceedings of Visual Computing 24(4), 271–280 (2008)

    Article  Google Scholar 

  8. Kim, T., Park, S., Shin, S.: Rhythmic-motion synthesis based on motion-beat analysis. In: Proceedings of ACM SIGGRAPH 2003, pp. 392–401 (2003)

    Google Scholar 

  9. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Transactions on Graphics 21(3), 473–482 (2002)

    Article  Google Scholar 

  10. Kwon, T., Shin, S.: Motion modeling for on-line locomotion synthesis. In: Proceedings of ACM Siggraph/Eurographics Symposium on Computer Animation, pp. 29–39 (2005)

    Google Scholar 

  11. Lee, J., Shin, S.: Hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of ACM SIGGRAPH 1999, pp. 39–48 (1999)

    Google Scholar 

  12. Lim, I., Thalmann, D.: Construction of animation models out of captured data. In: Proceedings of IEEE Int. Conf. on Multimedia and Expo., pp. 829–832 (2002)

    Google Scholar 

  13. Perlin, K.: Real time responsive animation with personality. IEEE Transactions on Visualization and Computer Graphics 1(1), 5–15 (1995)

    Article  Google Scholar 

  14. Rose, C., Cohen, M., Bodenheimer, B.: Verbs and adverbs: multidimensional motion interpolation. IEEE Computer Graphics and Applications 18(5), 32–40 (1998)

    Article  Google Scholar 

  15. Safonova, A., Hodgins, J., Pollard, N.: Synthesizing physically realistic human motion in low dimensional behavior-specific spaces. In: Proceedings of ACM Siggraph 2004, pp. 514–521 (2004)

    Google Scholar 

  16. Wiley, D., Hahn, J.: Interpolation synthesis of articulated figure motion. IEEE Computer Graphics and Applications 17(6), 39–45 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guerra-Filho, G., Raphael, G., Devarajan, V. (2011). A Quantitative Methodology to Evaluate Motion-Based Animation Techniques. In: Allbeck, J.M., Faloutsos, P. (eds) Motion in Games. MIG 2011. Lecture Notes in Computer Science, vol 7060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25090-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25090-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25089-7

  • Online ISBN: 978-3-642-25090-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics