Face Recognition Using TOF, LBP and SVM in Thermal Infrared Images

  • Ramiro Donoso Floody
  • César San Martín
  • Heydi Méndez-Vázquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


In this work, Binary Local Patterns (LBP), Support Vector Machine (SVM) and Trade-off (TOF) correlation filter are evaluated in face recognition tasks using thermal infrared imagery. The infrared technology has a particular kind of noise called non-uniformity and correspond to a fixed pattern noise superimposed at the input image, degrading the quality of the scene. Non-uniformity varies over time very slowly, and in many applications, depending of the technology used, can be assumed constant for at least several hours. Additionally, additive Gaussian noise (variable over time) is generated by the associated electronics. Both kind of noise affect the performance of classifiers in face recognition applications using infrared technology and must be considered. The comparison of performance of each method considering fixed and variable over time noise leads allow to conclude that SVM is more robust under both kind of noise.


Face Recognition Infrared Thermal Imaging SVM LBP TOF 


  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition With Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Casasent, D., Ravichandran, G.: Advanced distortion-invariant minimum average correlation energy (MACE) filters. Applied Optics 31, 1109–1116 (1992)CrossRefGoogle Scholar
  3. 3.
    Ghiass, R.S., Bendada, A., Maldague, X.: Infrared Face Recognition: A Review of the State of the Art. In: 10th International Conference on Quantitative InfraRed Thermography (July 2010)Google Scholar
  4. 4.
    Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A.: Recent advances in visual and infrared face recognition - a review. Computer Vision and Image Understanding 97, 103–135 (2005)CrossRefGoogle Scholar
  5. 5.
    Vijaya Kumar, B.V.K., Hassebrook, L.: Performance measures for correlation filters. Applied Optics 29(20), 2997–3006 (1990)CrossRefGoogle Scholar
  6. 6.
    Marcel, S., Rodriguez, Y., Heusch, G.: On the Recent Use of Local Binary Patterns for Face Authentication. International Journal on Image and Video Processing Special Issue on Facial Image Processing (2007)Google Scholar
  7. 7.
    San Martin, C., Carrillo, R., Meza, P., Mendez, H., Plasencia, Y., García-Reyes, E., Hermosilla, G.: Recent Advances on Face Recognition using Thermal Infrared Images. InTech (2011)Google Scholar
  8. 8.
    Méndez, H., Martín, C.S., Kittler, J., Plasencia, Y., García-Reyes, E.: Face Recognition with LWIR Imagery Using Local Binary Patterns. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 327–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Refregier, R.: Optimal trade-off filter for noise robustness, sharpness of the correlation peaks, and horner efficiency. Optics Letters 32, 1933–1935 (1993)Google Scholar
  10. 10.
    Socolinsky, D., Selinger, A., Neuheisel, J.: Face recognition with visible and thermal infrared imagery. Comput. Vis. Image Und. 91, 72–114 (2003)CrossRefGoogle Scholar
  11. 11.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ramiro Donoso Floody
    • 1
    • 2
  • César San Martín
    • 1
    • 2
  • Heydi Méndez-Vázquez
    • 3
  1. 1.Center for Optics and PhotonicsUniversity of La FronteraChile
  2. 2.Information Processing Laboratory, DIEUniversity of La FronteraChile
  3. 3.Advanced Technologies Application CenterCENATAVCuba

Personalised recommendations