Advertisement

Rapid Cut Detection on Compressed Video

  • Jurandy Almeida
  • Neucimar J. Leite
  • Ricardo da S. Torres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

The temporal segmentation of a video sequence is one of the most important aspects for video processing, analysis, indexing, and retrieval. Most of existing techniques to address the problem of identifying the boundary between consecutive shots have focused on the uncompressed domain. However, decoding and analyzing of a video sequence are two extremely time-consuming tasks. Since video data are usually available in compressed form, it is desirable to directly process video material without decoding. In this paper, we present a novel approach for video cut detection that works in the compressed domain. The proposed method is based on both exploiting visual features extracted from the video stream and on using a simple and fast algorithm to detect the video transitions. Experiments on a real-world video dataset with several genres show that our approach presents high accuracy relative to the state-of-the-art solutions and in a computational time that makes it suitable for online usage.

Keywords

video analysis temporal segmentation shot boundary cut detection compressed domain 

References

  1. 1.
    Almeida, J., Leite, N.J., Torres, R.S.: Comparison of video sequences with histograms of motion patterns. In: Int. Conf. Image Processing (ICIP 2011) (2011)Google Scholar
  2. 2.
    Almeida, J., Minetto, R., Almeida, T.A., Torres, R.S., Leite, N.J.: Robust estimation of camera motion using optical flow models. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 435–446. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Almeida, J., Minetto, R., Almeida, T.A., Torres, R.S., Leite, N.J.: Estimation of camera parameters in video sequences with a large amount of scene motion. In: Proc. of Int. Conf. Syst. Signals Image (IWSSIP 2010), pp. 348–351 (2010)Google Scholar
  4. 4.
    Almeida, J., Rocha, A., Torres, R.S., Goldenstein, S.: Making colors worth more than a thousand words. In: Int. Symp. Applied Comput. (ACM SAC 2008), pp. 1180–1186 (2008)Google Scholar
  5. 5.
    Bezerra, F.N., Leite, N.J.: Using string matching to detect video transitions. Pattern Anal. Appl. 10(1), 45–54 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bouch, A., Kuchinsky, A., Bhatti, N.T.: Quality is in the eye of the beholder: meeting users’ requirements for internet quality of service. In: Int. Conf. Human Factors Comput. Syst. (CHI 2000), pp. 297–304 (2000)Google Scholar
  7. 7.
    Guimarães, S.J.F., Patrocínio Jr., Z.K.G., Paula, H.B., Silva, H.B.: A new dissimilarity measure for cut detection using bipartite graph matching. Int. J. Semantic Computing 3(2), 155–181 (2009)CrossRefGoogle Scholar
  8. 8.
    Hanjalic, A.: Shot-boundary detection: Unraveled and resolved? IEEE Trans. Circuits Syst. Video Techn. 12(2), 90–105 (2002)CrossRefGoogle Scholar
  9. 9.
    Koprinska, I., Carrato, S.: Temporal video segmentation: A survey. Signal Processing: Image Communication 16(5), 477–500 (2001)Google Scholar
  10. 10.
    Lee, S.W., Kim, Y.M., Choi, S.W.: Fast scene change detection using direct feature extraction from MPEG compressed videos. IEEE Trans. Multimedia 2(4), 240–254 (2000)CrossRefGoogle Scholar
  11. 11.
    Lienhart, R.: Reliable transition detection in videos: A survey and practitioner’s guide. Int. J. Image Graphics 1(3), 469–486 (2001)CrossRefGoogle Scholar
  12. 12.
    Pei, S.C., Chou, Y.Z.: Efficient MPEG compressed video analysis using macroblock type information. IEEE Trans. Multimedia 1(4), 321–333 (1999)CrossRefGoogle Scholar
  13. 13.
    Pfeiffer, S., Lienhart, R., Kühne, G., Effelsberg, W.: The MoCA project - movie content analysis research at the University of Mannheim. In: GI Jahrestagung, pp. 329–338 (1998)Google Scholar
  14. 14.
    Whitehead, A., Bose, P., Laganière, R.: Feature based cut detection with automatic threshold selection. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 410–418. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Yeo, B.L., Liu, B.: Rapid scene analysis on compressed video. IEEE Trans. Circuits Syst. Video Techn. 5(6), 533–544 (1995)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Kankanhalli, A., Smoliar, S.W.: Automatic partitioning of full-motion video. Multimedia Syst. 1(1), 10–28 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jurandy Almeida
    • 1
  • Neucimar J. Leite
    • 1
  • Ricardo da S. Torres
    • 1
  1. 1.Institute of ComputingUniversity of Campinas – UNICAMPCampinasBrazil

Personalised recommendations