Advertisement

Gray Box Model with an SVM to Represent the Influence of PaCO2 on the Cerebral Blood Flow Autoregulation

  • Max Chacón
  • Mariela Severino
  • Ronney Panerai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

Since the appearance of methods based on machine learning, they have been presented as an alternative to classical phenomenological modeling and there are few initiatives that attempt to integrate them. This paper presents a hybrid paradigm called gray box that blends a phenomenological description (differential equation) and a Support Vector Machine (SVM) to model a relevant problem in the field of cerebral hemodynamic. The results show that with this type of paradigm it is possible to exceed the results obtained with phenomenological models and also with the models based on learning, in addition to contributing to the description of the modelled phenomenon.

Keywords

Gray Box Model Support Vector Machine Cerebral hemodynamic PaCO2 

References

  1. 1.
    Psichogios, D., Ungar, L.: A Hybrid Neural Networks First Principles Approach to Process Modeling. AIChE J. 38, 1499–1511 (1992)CrossRefGoogle Scholar
  2. 2.
    Thompson, M., Kramer, M.: Modeling Chemical Processes Using Prior Knowledge and Neural Networks. AIChE J. 40, 1328–1340 (1994)CrossRefGoogle Scholar
  3. 3.
    Anderson, J., McAvoy, T., Hao, O.: Use of Hybrid Models in Wastewater Systems. Ind. Eng. Chem. Res. 39, 94–1704 (2000)Google Scholar
  4. 4.
    Thibault, J., Acuña, G., Pérez-Correa, R., Jorquera, R., Molin, P., Agosin, E.: A hybrid representation approach for modelling complex dynamic bioprocesses. Bioprocess Engineering 22(6), 547–556 (2000)CrossRefGoogle Scholar
  5. 5.
    Acuña, G., Cubillos, F., Thibault, J., Latrille, E.: Comparison of Methods for Training Grey- box Neural Models. Computers. Chem. Engng. 23, S561–S564 (1999)Google Scholar
  6. 6.
    Panerai, R.B.: Assesment of cerebral pressure autoregulation in humans - a review of measurement methods. Physiological Measurement 9, 305–338 (1998)CrossRefGoogle Scholar
  7. 7.
    Simpson, D., Panerai, R., Evans, D., Garnham, J., Naylor, A., Bell, P.: Estimating normal and pathological flow velocity to step changes in end-tidal PCO2. Medical & Biological Engineering & Computing 38, 535–539 (2000)CrossRefGoogle Scholar
  8. 8.
    Poulin, M., Liang, P., Robbins, P.: Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. Journal of Applied Physiology 81, 1084–1095 (1996)Google Scholar
  9. 9.
    Mitsis, G., Poulin, M., Robbins, P., Marmarelis, V.: Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans. IEEE Transactions on Biomedical Engineering 51, 1932–1943 (2004)CrossRefGoogle Scholar
  10. 10.
    Chacón, M., Araya, C., Panerai, R.B.: Non-linear multivariate modeling of cerebral hemodynamics with autoregressive Support Vector Machines. Medical Engineering & Physics 33(2), 180–187 (2011)CrossRefGoogle Scholar
  11. 11.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.: New support vector algorithms. Neural Computation 2, 1083–1121 (1998)Google Scholar
  13. 13.
    Tiecks, F., Lam, A., Aaslid, R., Newell, D.: Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26, 1014–1019 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Max Chacón
    • 1
  • Mariela Severino
    • 1
  • Ronney Panerai
    • 2
  1. 1.Departamento de Ingeniería InformáticaUniversidad de Santiago de ChileCasillaChile
  2. 2.Medical Physics Group, Department of Cardiovascular Sciences, Faculty of MedicineUniversity of LeicesterLeicesterUK

Personalised recommendations