An Active Learning Approach for Statistical Spoken Language Understanding

  • Fernando García
  • Lluís-F. Hurtado
  • Emilio Sanchis
  • Encarna Segarra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


In general, large amount of segmented and labeled data is needed to estimate statistical language understanding systems. In recent years, different approaches have been proposed to reduce the segmentation and labeling effort by means of unsupervised o semi-supervised learning techniques. We propose an active learning approach to the estimation of statistical language understanding models that involves the transcription, labeling and segmentation of a small amount of data, along with the use of raw data. We use this approach to learn the understanding component of a Spoken Dialog System. Some experiments that show the appropriateness of our approach are also presented.


active learning unaligned corpus spoken language understanding spoken dialog systems 


  1. 1.
    De Mori, R., Bechet, F., Hakkani-Tur, D., McTear, M., Riccardi, G., Tur, G.: Spoken language understanding: A survey. IEEE Signal Processing Magazine 25(3), 50–58 (2008)CrossRefGoogle Scholar
  2. 2.
    Fraser, M., Gilbert, G.: Simulating speech systems. Computer Speech and Language 5, 81–99 (1991)CrossRefGoogle Scholar
  3. 3.
    Gotab, P., Bechet, F., Damnati, G.: Active learning for rule-based and corpus-based spoken labguage understanding moldes. In: IEEE Workshop Automatic Speech Recognition and Understanding (ASRU 2009), pp. 444–449 (2009)Google Scholar
  4. 4.
    Gotab, P., Damnati, G., Becher, F., Delphin-Poulat, L.: Online slu model adaptation with a partial oracle. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 2862–2865 (2010)Google Scholar
  5. 5.
    He, Y., Young, S.: Spoken language understanding using the hidden vector state model. Speech Communication 48, 262–275 (2006)CrossRefGoogle Scholar
  6. 6.
    Ortega, L., Galiano, I., Hurtado, L.F., Sanchis, E., Segarra, E.: A statistical segment-based approach for spoken language understanding. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 1836–1839 (2010)Google Scholar
  7. 7.
    Riccardi, G., Hakkani-Tur, D.: Active learning: theory and applications to automatic speech recognition. IEEE Transactions on Speech and Audio Processing 13(4), 504–511 (2005)CrossRefGoogle Scholar
  8. 8.
    Segarra, E., Sanchis, E., Galiano, M., García, F., Hurtado, L.: Extracting Semantic Information Through Automatic Learning Techniques. International Journal of Pattern Recognition and Artificial Intelligence 16(3), 301–307 (2002)CrossRefGoogle Scholar
  9. 9.
    Tur, G., Hakkani-Tr, D., Schapire, R.E.: Combining active and semi-supervised learning for spoken language understanding. Speech Communication 45, 171–186 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fernando García
    • 1
  • Lluís-F. Hurtado
    • 1
  • Emilio Sanchis
    • 1
  • Encarna Segarra
    • 1
  1. 1.Grup d’Enginyeria del Llenguatge Natural i Reconeixement de Formes, Department de Sistemes Informàtics i ComputacióUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations