Improvements on Automatic Speech Segmentation at the Phonetic Level

  • Jon Ander Gómez
  • Marcos Calvo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)


In this paper, we present some recent improvements in our automatic speech segmentation system, which only needs the speech signal and the phonetic sequence of each sentence of a corpus to be trained. It estimates a GMM by using all the sentences of the training subcorpus, where each Gaussian distribution represents an acoustic class, which probability densities are combined with a set of conditional probabilities in order to estimate the probability densities of the states of each phonetic unit. The initial values of the conditional probabilities are obtained by using a segmentation of each sentence assigning the same number of frames to each phonetic unit. A DTW algorithm fixes the phonetic boundaries using the known phonetic sequence. This DTW is a step inside an iterative process which aims to segment the corpus and re-estimate the conditional probabilities. The results presented here demonstrate that the system has a good capacity to learn how to identify the phonetic boundaries.


automatic speech segmentation phoneme boundaries detection phoneme alignment 


  1. 1.
    Toledano, D.T., Hernández Gómez, L., Villarrubia Grande, L.: Automatic Phonetic Segmentation. IEEE Transactions on Speech and Audio Processing 11(6), 617–625 (2003)CrossRefGoogle Scholar
  2. 2.
    Kipp, A., Wesenick, M.B., Schiel, F.: Pronunciation modelling applied to automatic segmentation of spontaneous speech. In: Proceedings of Eurospeech, Rhodes, Greece, pp. 2013–2026 (1997)Google Scholar
  3. 3.
    Sethy, A., Narayanan, S.: Refined Speech Segmentation for Concatenative Speech Synthesis. In: Proceedings of ICSLP, Denver, Colorado, USA, pp. 149–152 (2002)Google Scholar
  4. 4.
    Jarify, S., Pastor, D., Rosec, O.: Cooperation between global and local methods for the automatic segmentation of speech synthesis corpora. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1666–1669 (2006)Google Scholar
  5. 5.
    Romsdorfer, H., Pfister, B.: Phonetic Labeling and Segmentation of Mixed-Lingual Prosody Databases. In: Proceedings of Interspeech, Lisbon, Portual, pp. 3281–3284 (2005)Google Scholar
  6. 6.
    Paulo, S., Oliveira, L.C.: DTW-based Phonetic Alignment Using Multiple Acoustic Features. In: Proceedings of Eurospeech, Geneva, Switzerland, pp. 309–312 (2003)Google Scholar
  7. 7.
    Park, S.S., Shin, J.W., Kim, N.S.: Automatic Speech Segmentation with Multiple Statistical Models. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 2066–2069 (2006)Google Scholar
  8. 8.
    Mporas, I., Ganchev, T., Fakotakis, N.: Speech segmentation using regression fusion of boundary predictions. Computer Speech and Language 24, 273–288 (2010)CrossRefGoogle Scholar
  9. 9.
    Povey, D., Woodland, P.C.: Minimum Phone Error and I-smoothing for improved discriminative training. In: Proceedings of ICASSP, Orlando, Florida, USA, pp. 105–108 (2002)Google Scholar
  10. 10.
    Kuo, J.W., Wang, H.M.: Minimum Boundary Error Training for Automatic Phonetic Segmentation. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1217–1220 (2006)Google Scholar
  11. 11.
    Huggins-Daines, D., Rudnicky, A.I.: A Constrained Baum-Welch Algorithm for Improved Phoneme Segmentation and Efficient Training. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1205–1208 (2006)Google Scholar
  12. 12.
    Ogbureke, K.U., Carson-Berndsen, J.: Improving initial boundary estimation for HMM-based automatic phonetic segmentation. In: Proceedings of Interspeech, Brighton, UK, pp. 884–887 (2009)Google Scholar
  13. 13.
    Gómez, J.A., Castro, M.J.: Automatic Segmentation of Speech at the Phonetic Level. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 672–680. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Gómez, J.A., Sanchis, E., Castro-Bleda, M.J.: Automatic Speech Segmentation Based on Acoustical Clustering. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 540–548. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J.B., Nadeu, C.: Albayzin Speech Database: Design of the Phonetic Corpus. In: Proceedings of Eurospeech, Berlin, Germany, vol. 1, pp. 653–656 (September 1993)Google Scholar
  16. 16.
    TIMIT Acoustic-Phonetic Continuous Speech Corpus, National Institute of Standards and Technology Speech Disc 1-1.1, NTIS Order No. PB91-5050651996 (October 1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jon Ander Gómez
    • 1
  • Marcos Calvo
    • 1
  1. 1.Departament de Sistemes Informàtics i ComputacióUniversitat Politècnica de ValènciaSpain

Personalised recommendations