Advertisement

Spectral Model for Fixed-Pattern-Noise in Infrared Focal-Plane Arrays

  • Jorge E. Pezoa
  • Osvaldo J. Medina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

In this paper a novel and more realistic analytical model for the fixed-pattern noise present in infrared focal plane arrays is developed. The model captures, in the frequency domain, the spatial structure of the fixed-pattern noise yielding a suitable input/output representation for an infrared focal plane array. The theoretical and practical applicability the model is illustrated by both synthesizing fixed-pattern noise from three different infrared cameras and improving the performance of a previously reported fixed-pattern noise compensation algorithm.

References

  1. 1.
    Dereniak, E.L., Boreman, G.D.: Infrared Detectors and Systems, 1st edn. John Wiley & Sons, Inc. (1996)Google Scholar
  2. 2.
    Holst, G.C.: CCD Arrays, cameras, and displays. In: SPIE - International Society for Optical Engineering (1998)Google Scholar
  3. 3.
    López-Alonso, J.M., et al.: Principal-component characterization of noise for infrared images. Applied Optics 41, 320–331 (2002)CrossRefGoogle Scholar
  4. 4.
    Zhou, H., Liu, S., Lai, R., Wang, D., Cheng, Y.: Solution for the nonuniformity correction of infrared focal plane arrays. Applied Optics 44, 2928–2932 (2005)CrossRefGoogle Scholar
  5. 5.
    Narayanan, B., Hardie, R.C., Muse, R.A.: Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture. App. Optics 44, 17 (2005)CrossRefGoogle Scholar
  6. 6.
    Torres, S.N., Hayat, M.M.: Kalman filtering for adaptive nonuniformity correction in infrared focal plane arrays. JOSA-A Opt. Soc. America 20(5) (2003)Google Scholar
  7. 7.
    Qian, W., Chen, Q., Gu, G.: Space low-pass and temporal high-pass nonuniformity correction algorithm. Optical Review 17, 24–29 (2010)CrossRefGoogle Scholar
  8. 8.
    Hardie, R.C., Douglas, R.D.: A map estimator for simultaneous superresolution and detector nonuniformity correction. EURASIP J. Advances Signal Proc. (2007)Google Scholar
  9. 9.
    El Gamal, A., Fowler, F., Min, H., Liu, X.: Modeling and estimation of FPN components in CMOS image sensors. In: Proc. SPIE, vol. 3301, pp. 168–177 (1998)Google Scholar
  10. 10.
    Godoy, S., Pezoa, J.E., Torres, S.N.: Noise-cancellation based nonuniformity correction algorithm for infrared focal-plane arrays. Applied Optics 47 (2008)Google Scholar
  11. 11.
    Gómez-Chova, L., Alonso, L., Guanter, L., Camps-Valls, G., Calpe, J., Moreno, J.: Correction of systematic spatial noise in push-broom hyperspectral sensors: application to chris/proba images. App. Optics 47(28) (2008)Google Scholar
  12. 12.
    Leathers, R., Downes, T., Priest, R.: Scene-based nonuniformity corrections for optical and SWIR pushbroom sensors. Optics Express 13(13), 5136–5150 (2005)CrossRefGoogle Scholar
  13. 13.
    Fischer, A.D., Thomas, T.J., Leathers, R.A., Downes, T.V.: Stable scene-based non-uniformity correction coefficients for hyperspectral SWIR sensors. In: IEEE Aerospace Conference, 2007, pp. 1–14 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jorge E. Pezoa
    • 1
  • Osvaldo J. Medina
    • 1
  1. 1.Departamento de Ingeniería Eléctrica and Center for Optics and Photonics (CEFOP)Universidad de ConcepciónConcepciónChile

Personalised recommendations